• Title/Summary/Keyword: rover

Search Result 113, Processing Time 0.02 seconds

Verification on the Application of Monitoring for Frame Structures Using the VRS-RTK Method through the Free Vibration Test (자유 진동 실험을 통한 VRS-RTK 기법을 이용한 골조 구조물의 모니터링 적용성 검토)

  • Choi, Se-Woon;Park, Hyo-Seon;Kim, Bub-Ryur;Lee, Hong-Min;Kim, You-Sok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.174-182
    • /
    • 2014
  • To monitor the wind-induced responses of buildings, conventional real-time kinematic (RTK) methods based on two global positioning system (GPS) receivers (e.g., a reference and a rover) are widely applied. However, these methods can encounter problems such as difficulty in securing and maintaining a space for a reference station. With the recently developed virtual reference station (VRS)-RTK approach, the position of a structure can be measured using only a rover receiver. In this study, to evaluate the applicability of VRS-RTK methods in monitoring the lateral structural responses of frame structures, we performed free vibration tests on a one-story frame model (the first natural frequency of 1 Hz) and a three-story frame model (the first natural frequency of 0.85 Hz). To assess the reliability of the displacement and acceleration responses measured by the GPS, we performed a concurrent measurement using laser displacement sensors and an accelerometer. The accelerometer results were consistent with the GPS measurements in terms of the time history and frequency content. Furthermore, to derive an appropriate sampling rate for the continuous monitoring of buildings, the errors in the displacement responses were evaluated at different GPS sampling rates (5, 10, 20 Hz). The results indicate that as the sampling rate increased, the errors in the displacement responses decreased. In addition, in the three-story model, all modal components (first, second, and third modes) could be recorded at a sampling rate of 20 Hz.

Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region (달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험)

  • Park, Jae-Min;Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.741-749
    • /
    • 2022
  • Major space agencies are planning for the rover-based lunar exploration since water-ice was detected in permanently shadowed regions (PSR). Although sunlight does not directly reach the PSRs, it is expected that reflected sunlight sustains a certain level of low-light environment. In this research, the indoor testbed was made to simulate the PSR's lighting and topological conditions, to which low light enhancement methods (CLAHE, Dehaze, RetinexNet, GLADNet) were applied to restore image brightness and color as well as to investigate their influences on the performance of feature extraction and matching methods (SIFT, SURF, ORB, AKAZE). The experiment results show that GLADNet and Dehaze images in order significantly improve image brightness and color. However, the performance of the feature extraction and matching methods were improved by Dehaze and GLADNet images in order, especially for ORB and AKAZE. Thus, in the lunar exploration, Dehaze is appropriate for building 3D topographic map whereas GLADNet is adequate for geological investigation.

Analysis of Position Error Variance on GNSS Augmentation System due to Non-Common Measurement Error (비공통오차 증가로 인한 위성항법보강시스템 위치 오차 분산 변화 분석)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Yeom, Chan-Hong;Lee, Young-Jae;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.197-200
    • /
    • 2008
  • A GNSS augmentation system provides precise position information using corrected GNSS pseudorange measurements. Common bias errors are corrected by PRC (Pseudorange Correction) between reference stations and a rover. However non-common errors (Ionospheric and Tropospheric noise error) are not corrected. Using position error variance this paper analyzes non-common errors (noise errors) of ionosphere and troposphere wet vapor.

  • PDF

A Minimal Resource High-Level Synthesis Algorithm for Low Power Design Automation (저 전력 설계 자동화를 위한 최소 자원 상위 레벨 합성 알고리즘)

  • Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.95-99
    • /
    • 2008
  • This paper proposes a new minimal resource high-level synthesis algorithm for low power design automation. The proposed algorithm executes an efficient approach to minimize the power consumption of the functional units in a circuit during the high level synthesis. In this paper, we visit all control steps one by one to reduce the switching activity in CDFG. The register sharing algorithm determines the minimum register after the life time analysis of all variable. According to property of input signal for functional unit, the proposed method visits all control step one by one and determines the resource allocation with minimal power consumption at each control step in a greedy fashion. The effect of the proposed algorithm has been proved through various filter benchmark to adopt a new scheduling and allocation algorithm considering the low rover.

  • PDF

A Study for Improving the Positioning Accuracy of DGPS Based on Multi-Reference Stations by Applying Exponential Modeling on Pseudorange Corrections

  • Kim, Koon-Tack;Park, Kwan-Dong;Lee, Eunsung;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, a pseudorange correction regeneration algorithm was developed to improve the positioning accuracy of DGPS using multi-reference stations, and the optimal minimum number of reference sites was determined by trying out different numbers of reference. This research was conducted using from two to five sites, and positioning errors of less than 1 m were obtained when pseudorange corrections are collected from at least four reference stations and interpolated as the pseudorange correction at the rover. After determining the optimal minimum number of reference stations, the pseudorange correction regeneration algorithm developed was tested by comparison with the performance of other algorithms. Our approach was developed based on an exponential model. If pseudorange corrections are regenerated using an exponential model, the effect of a small difference in the baseline distance can be enlarged. Therefore, weights can be applied sensitively even when the baseline distance differs by a small amount. Also weights on the baseline distance were applied differently by assigning weights depending on the difference of the longest and shortest baselines. Through this method, the positioning accuracy improved by 19% compared to the result of previous studies.

Performance Evaluation of the Ground-to-Ground Surveillance Test bed Based on ADS-B Concept (ADS-B 개념기반의 지대지 감시 Test bed 성능평가)

  • Oh, Kyung-Ryoon;Kim, In-Kyu;Song, Jae-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.45-54
    • /
    • 2007
  • In this study, the function of TIS-B(Traffic Information Service-Broadcasting), Runway incursion prevention, conflict warning, way-point assignment were evaluated using ground-to-ground surveillance test bed of KARI which was based on ADS-B(Automatic Dependant Surveillance-Broadcasting) concept. VDL(VHF Data Link) based on STDMA protocol was used as a data link, and an UAT(Universal Access Transceiver) was included to get the TIS-B information, and four ground vehicles and two aircraft were included as rover units. The main purpose of this test bed was to realize the ADS-B concept for the application of ground surveillance and to evaluate its performance.

  • PDF

3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

  • Hong, Ik-Seon;Yi, Yu;Yu, Jaehyung;Haruyama, Junichi
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

An Improvement Scheme of Process Quality in The Korean Building Projects (건축프로젝트에 있어서 프로세스 질 관리의 개선에 관한연구)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.51-57
    • /
    • 2006
  • The object of this study is to examine the managerial characteristics of the Korean building projects. The study in this paperproposes to investigate the factors that affect process quality not only in the construction phase but also in all three phases (design, construction, and operation) of the whole life cycle of a building project. A questionnaire survey is conducted to investigate the differences in the perceptions of graduate students, professors, designers and practitioners with regard to process quality in building projects. Analyzing these factors helps in revising and improving the Korean existing quality control system and programs. The findings indicate that cooperation of designer's professionals, level of management leadership in promoting quality, ability to operate the facility within design limits are important factors. Theparticipation percentage of "quality" treated in any course/seminar shows only 45%. It is recommended that college programs include courses that treat the administrative aspects involved in the building project and that continuing education programs rover quality training.

  • PDF

Spherical Robot for Planetary Explorations: An Approach to Educating Concepts of Mechatronics and Robotics to High School Students

  • Kim, Sooyoung;Kim, Seonje;Kim, Byungkyu;Sen, Soumen
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.36-43
    • /
    • 2020
  • Many countries and international organizations have carried out rover missions to explore planetary surfaces. Accordingly, the demand for mechatronics education, which is closely related to building exploratory robots, is also steadily increasing. However, due to the complexity in understanding the background information needed for mechatronics, it is hard for pre-college students to study such process. In this study, we suggest an educational platform for mechatronics using a combined robot kit with a spherical robot and a smartphone application. To provide a visual understanding, the dynamic model of the robot is constructed while analyzing the error between actual driving and a simulation, and the educational algorithm of the game and a feedback method are proposed to improve the learning efficacy by considering the user's level of knowledge of mechatronics. We use this educational spherical robot to develop a curling game platform that can impart engineering education even when students lack significant knowledge.

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.