• Title/Summary/Keyword: round robin

Search Result 339, Processing Time 0.027 seconds

EMC 관련 최근 기술 동향 - CISPR 20 방사내성 Round Robin Test 결과 및 분석

  • Jang, Tae-Heon;Jo, Won-Seo
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.60
    • /
    • pp.48-52
    • /
    • 2006
  • 2006 CISPR 총회가 스웨덴 스톡홀름 KISTA에서 개최되었다. CISPR I 회의는 9월 18일부터 20일까지 3일간 WG2 및 WG4를 중심으로 진행되었으며, WG1과 WG3 회의는 9월 20일 오후에 있었다. 우리나라에서는 WG1에 두 가지 제안을 발표하였다. 하나는 2004년 중국 상해 회의에서 처음 제안하여 2005년 남아공 케이프타운 회의에서 Task Force가 구성된 대형 시험품에 대한 CISPR 20의 외부 방사내성 시험레벨에 관한 것이다. 2006년 1월 미국 산타페에서 열린 TF 회의에서 시험결과에 대한 기술적 토론이 있었으며, Round Robin Test(RRT)를 실시하기로 결정되었다. RRT시험은 7월 중순에 실시되었으며, 참여한 시험소는 영국의 SONY, 네덜란드의 Philips, 독일의 SHARP 이었으며, 국내의 여러 EMC 시험소도 추후에 참여하였다. RRT 시험의 결과 및 분석이 이번 스톡홀름 회의에서 발표되었다. 또한, CISPR 13의 방사성 방출(RE)의 측정거리 기준점의 변경에 관한 것이다. 본 고에서는 TV 수신기에 대한 RRT 시험결과 및 분석에 대한 발표 내용을 소개하고자 한다. CISPR 20의 외부 전자기장 내성 시험은 0.8 m인 개방형 스트립라인(Open Strip-line: OSL)내에 시험품을 설치하고 $150kHz{\sim}150MHz$에서 시험하도록 규정하고 있다. OSL에 설치할 수 없는 대형기기는 IEC 61000-4-3에 따라서 주파수 범위 $80MHz{\sim}150MHz$까지 동일한 한계치로 전자파무반사실에서 시험하도록 규정되어 있다. 이에 대해 국내 제조업체 및 EMC 전문가들로 구성된 CISPR I 국내 위원회에서는 IEC 61000-4-3에 의한 전자파무반사실(챔버)에서의 내성시험이 CISPR 20에 의한 OSL에서의 내성시험보다 가혹하다는 문제 제기가 있었다. 이것이 본 안건에 대한 배경이다 지금까지 진행되어 왔던 내용을 요약해 보면 2004년 상해 회의에서, 수치해석 및 측정비교를 통하여 CISPR 20에서 규정하고 있는 OSL 전기장 교정방법의 개선의 필요성과 OSL에서 시험할 수 없는 대형 시험품에 대하여 시험레벨을 조정할 것을 지적하였다. 2005년 케이프타운 회의에서는 실제적으로 TV 방송 수신기 및 관련기기가 두가지 방법으로 시험되었을 때 시험결과에 미치는 영향을 시험품의 전기장 내성 레벨로 비교하였으며, 전자파무반사실에서 시험할 경우 시험레벨이 12 dB 낮추도록 보정되어야 할 것을 제안하였다. 2006년 이번 회의에서는 세계 각국의 시험소와 비교시험을 통하여 나타난 OSL과 전자파무반사실 간의 시험결과의 차이 및 이에 대한 원인을 분석하여 보고하였다. OSL과 전자파무반사실 비교시험에서 나타난 차이는 평균적으로 9 dB의 차이로 나타났으며, 주요 원인은 OSL에서 적용하고 있는 시험품을 OSL내부에 설치한 후 시험품에 의해 변경된 전기장의 세기를 보정해 주는 인자(k2)로 인한 차이(6 dB)와 OSL 내부의 전기장의 세기와 전자파무반사실 균일장 영역의 전기장의 세기의 차이(3 dB)이다.

A Load Balancing Method using Partition Tuning for Pipelined Multi-way Hash Join (다중 해시 조인의 파이프라인 처리에서 분할 조율을 통한 부하 균형 유지 방법)

  • Mun, Jin-Gyu;Jin, Seong-Il;Jo, Seong-Hyeon
    • Journal of KIISE:Databases
    • /
    • v.29 no.3
    • /
    • pp.180-192
    • /
    • 2002
  • We investigate the effect of the data skew of join attributes on the performance of a pipelined multi-way hash join method, and propose two new harsh join methods in the shared-nothing multiprocessor environment. The first proposed method allocates buckets statically by round-robin fashion, and the second one allocates buckets dynamically via a frequency distribution. Using harsh-based joins, multiple joins can be pipelined to that the early results from a join, before the whole join is completed, are sent to the next join processing without staying in disks. Shared nothing multiprocessor architecture is known to be more scalable to support very large databases. However, this hardware structure is very sensitive to the data skew. Unless the pipelining execution of multiple hash joins includes some dynamic load balancing mechanism, the skew effect can severely deteriorate the system performance. In this parer, we derive an execution model of the pipeline segment and a cost model, and develop a simulator for the study. As shown by our simulation with a wide range of parameters, join selectivities and sizes of relations deteriorate the system performance as the degree of data skew is larger. But the proposed method using a large number of buckets and a tuning technique can offer substantial robustness against a wide range of skew conditions.

A Novel Cooperative Warp and Thread Block Scheduling Technique for Improving the GPGPU Resource Utilization (GPGPU 자원 활용 개선을 위한 블록 지연시간 기반 워프 스케줄링 기법)

  • Thuan, Do Cong;Choi, Yong;Kim, Jong Myon;Kim, Cheol Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.5
    • /
    • pp.219-230
    • /
    • 2017
  • General-Purpose Graphics Processing Units (GPGPUs) build massively parallel architecture and apply multithreading technology to explore parallelism. By using programming models like CUDA, and OpenCL, GPGPUs are becoming the best in exploiting plentiful thread-level parallelism caused by parallel applications. Unfortunately, modern GPGPU cannot efficiently utilize its available hardware resources for numerous general-purpose applications. One of the primary reasons is the inefficiency of existing warp/thread block schedulers in hiding long latency instructions, resulting in lost opportunity to improve the performance. This paper studies the effects of hardware thread scheduling policy on GPGPU performance. We propose a novel warp scheduling policy that can alleviate the drawbacks of the traditional round-robin policy. The proposed warp scheduler first classifies the warps of a thread block into two groups, warps with long latency and warps with short latency and then schedules the warps with long latency before the warps with short latency. Furthermore, to support the proposed warp scheduler, we also propose a supplemental technique that can dynamically reduce the number of streaming multiprocessors to which will be assigned thread blocks when encountering a high contention degree at the memory and interconnection network. Based on our experiments on a 15-streaming multiprocessor GPGPU platform, the proposed warp scheduling policy provides an average IPC improvement of 7.5% over the baseline round-robin warp scheduling policy. This paper also shows that the GPGPU performance can be improved by approximately 8.9% on average when the two proposed techniques are combined.

EPR : Enhanced Parallel R-tree Indexing Method for Geographic Information System (EPR : 지리 정보 시스템을 위한 향상된 병렬 R-tree 색인 기법)

  • Lee, Chun-Geun;Kim, Jeong-Won;Kim, Yeong-Ju;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2294-2304
    • /
    • 1999
  • Our research purpose in this paper is to improve the performance of query processing in GIS(Geographic Information System) by enhancing the I/O performance exploiting parallel I/O and efficient disk access. By packing adjacent spatial data, which are very likely to be referenced concurrently, into one block or continuous disk blocks, the number of disk accesses and the disk access overhead for query processing can be decreased, and this eventually leads to the I/O time decrease. So, in this paper, we proposes EPR(Enhanced Parallel R-tree) indexing method which integrates the parallel I/O method of the previous Parallel R-tree method and a packing-based clustering method. The major characteristics of EPR method are as follows. First, EPR method arranges spatial data in the increasing order of proximity by using Hilbert space filling curve, and builds a packed R-tree by bottom-up manner. Second, with packing-based clustering in which arranged spatial data are clustered into continuous disk blocks, EPR method generates spatial data clusters. Third, EPR method distributes EPR index nodes and spatial data clusters on multiple disks through round-robin striping. Experimental results show that EPR method achieves up to 30% or more gains over PR method in query processing speed. In particular, the larger the size of disk blocks is and the smaller the size of spatial data objects is, the better the performance of query processing by EPR method is.

  • PDF

A new warp scheduling technique for improving the performance of GPUs by utilizing MSHR information (GPU 성능 향상을 위한 MSHR 정보 기반 워프 스케줄링 기법)

  • Kim, Gwang Bok;Kim, Jong Myon;Kim, Cheol Hong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.3
    • /
    • pp.72-83
    • /
    • 2017
  • GPUs can provide high throughput with latency hiding by executing many warps in parallel. MSHR(Miss Status Holding Registers) for L1 data cache tracks cache miss requests until required data is serviced from lower level memory. In recent GPUs, excessive requests for cache resources cause underutilization problem of GPU resources due to cache resource reservation fails. In this paper, we propose a new warp scheduling technique to reduce stall cycles under MSHR resource shortage. Cache miss rates for each warp is predicted based on the observation that each warp shows similar cache miss rates for long period. The warps showing low miss rates or computation-intensive warps are given high priority to be issued when MSHR is full status. Our proposal improves GPU performance by utilizing cache resource more efficiently based on cache miss rate prediction and monitoring the MSHR entries. According to our experimental results, reservation fail cycles can be reduced by 25.7% and IPC is increased by 6.2% with the proposed scheduling technique compared to loose round robin scheduler.

Performance Evaluation of Disk Scheduling Schemes in a VOD System (VOD 시스템에서의 디스크 스케줄링 기법의 성능 평가)

  • Jeon, Yong-Hee;Lee, Sang-Hag
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3519-3533
    • /
    • 2000
  • In a VOD(Video-On-Demand) system, I/O performance and storage requirements are generally more important than computing capability, Due to the development of CPU tecnology, the gap between the performance of processors and desk speed are widening. Therefore, the disk system typically becomes the bohleneck ina VOD system. In order to allevte those effects from physical constramts, disk array system is used. The I/O performance of disk arrays can be improved by the capability of processors, I/O schefuling polcy, the number of member disks in the array, disk block size, block placemet method etc. In this paper, we considered the disk scheduling schemes including EDF( Earliest Deadine First), SCAN, SGAN-EDF, Round-robm. GSS(Grouped Sweeping scheme), and C-SCAN, LOOK, C-LOOK which are variations of SCAN Mamly focusing on those disk scheduling schemes, we performed the simulation in order to compare and eview the perionmance of disk arrays considening seveial related parameters under diverse environments and analyzed the effects of those parameters to the performance.

  • PDF

A Study on Dynamic Bandwidth Allocation Mechanism for an Enhancement of E-PON's Upstream Throughput (E-PON의 상향 대역전송 성능 향상을 위한 동적대역할당 메커니즘 연구)

  • Lee, Dong-Yeal;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.547-552
    • /
    • 2007
  • IEEE ratified IEEE802.3ah as the standard of E-PON, while it leaved the specific method of upstream bandwidth allocation as a role of implementation vendors. Many experts have researched the method of enhancing upstream bandwidth throughput and released related papers. This paper presents another novel mechanism to enhance upstream throughput. This mechanism performs the management of upstream queues by giving the minimum bandwidth of different level to each queue. In order to process packets on each queue we adopted a modified weighted DRR technology. By doing so, the transmission throughput of upstream packets can be largely enhanced. The experimental simulation of this mechanism showed an enhancement of bandwidth utilization more than 10% in comparison to legacy method.

Efficient Power and Resource Scheduling for Bluetooth Piconet (블루투스 피코넷에서의 효율적인 전력 및 자원 스케줄링)

  • Park, Sae-Rom;Woo, Sung-Je;Im, Soon-Bin;Lee, Tae-Jin
    • The KIPS Transactions:PartC
    • /
    • v.11C no.4
    • /
    • pp.555-562
    • /
    • 2004
  • We consider differentiated bandwidth allocation for a piconet in short-range wireless personal network systems : Bluetooth. Since bandwidth requirements nay vary among applications/services, and/or it may change over time, it is important to decide how to allocate limited resources to various service classes to meet their service requirements. We propose a simple and efficient bandwidth allocation mechanism which meets bandwidth requirements of various service types while saving power consumption by a Power saying mode, i.e., sniff node. We compare our proposed mechanism with a conventional (weighted) round-robin polling scheme and show that it achieves significant improvement of hroughput, delay, and power consumption.

An Adjustable Round Robin Scheduling Algorithm for the High Data Rate Mobile Communication System (고속 이동 통신을 위한 적응 가능한 라운드 로빈 스케줄링 방식)

  • Bae, Jeong-Min;Song, Young-Keum;Kim, Dong-Woo
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • Next-generation wireless networks are expected to support a wide range of services, including high-rate data applications, Various service types request differentiated QoSs(Qualities of Service) such as minimum data rate, accuracy, fairness and so on. Although resources of radio systems are limited, for many applications, it is important that certain QoS targets are required to be met. In this paper, we propose a QoS based scheduling algorithm for next generation systems, based on analyzing previous researches, and we develop the proposed QoS algorithm only for MIMO(multi-Input Multi-Output) systems. Moreover, we subsequently prove that the proposed algorithm optimize throughput relative to prespecified target values and converge to certain throughput.

The Efficiency Design & MAC Function of the Composition Optical Network (광통신망 구축의 효과적인 설계 및 MAC고려 요소)

  • 하창국
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2001
  • The paper describes SR3 (Synchronous Round Robin with Reservations), a collision-free medium access control protocol for all-optical slotted packet networks based on WDM multi-channel ring topologies where nodes are equipped with one fixed-wavelength receiver and one wavelength-tunable transmitter SR3 is derived from the SRR and MMR protocols previously proposed by the same authors for the same class of all-optical networks. SRR and MMR already achieve an efficient exploitation of the available bandwidth, while guaranteeing a throughput-fair access to each node. SR3, In addition, allows nodes to reserve slots. thereby achieving a stronger control on access delays; it is thus well suited to meet tight delay requirements, as it is the case for multimedia applications. Simulation results show that SR3 provides very good performance to guaranteed qualify traffic, but also brings signigicant performance improvements for best-effort traffic. Energy effciency is an important issue for optical network since they must rely on their batteries. We present a novel MAC protocol that achieves a good energy efficiency of optical interface of the network and provides support for diverse traffic types and QoS. The scheduler of the base station is responsible to provide the required QoS to connections on the optical link and to minimise the amount of energy spend by the High speed Network. The main principles of the MaC protocol are to avoid unsuccessful actions, minimise the number of transitions , and synchronise the mobile and the base-station. We will show that considerable amounts of energy can be saved using these principles.

  • PDF