• Title/Summary/Keyword: roughness height

Search Result 267, Processing Time 0.028 seconds

CNS Shear Tests for Granite-Concrete Interlace of drilled shaft (국내 현장타설말뚝의 주면 접촉부에 대한 일정강성도 전단시험)

  • 조천환;이명환;김성회;이혁진;유한규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.147-152
    • /
    • 2003
  • The purpose of this paper is to develope an understanding of fundamental mechanism of shear behaviour between granite and concrete interfaces. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axisymmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed In granite. The samples were prepared in the laboratory to simulate field condition, roughness(angle, height), stress boundary condition, and then tested by CNS direct shear tests. This paper gives some points about shearing behaviour of socket piles into domestic granite through the analysis of CNS tests results.

  • PDF

A Study on Hydro-Static Polishing for Sculptured Surface (자유곡면의 정압연마에 관한 연구)

  • Cho, Jong-Rae;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2006
  • The finishing process of die requires the processing technique of a height efficiency and precision. Because the precision of die gives the quality of goods the influence directly. The hydro-static polishing device employs the hydro-static axis and is able to polish the structure of complex picture under the constant pressure and is got constant surface roughness at all polished plane. Therefore, In order to polish precision sculptured surface, it was used the hydro-static polishing device. Polishing device's polishing characteristic is estimated by polishing conditions which are size of abrasive, material of tools. And, because the surface quality of workpiece depends on polishing pattern which relates to motion of abrasive grain. The polishing characteristic according to polishing pattern was evaluated.

3D Modeling of Ground Surface with Statistical Method (통계적방법을 이용한 연삭표면의 3차원모델링)

  • 김동길;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • This paper simulated surface grinding process with statistically simulated grinding wheel topography, considering ridge formation phenomenon when grain scratch workpiece. Wheel grain is modeled as hybrid sphere and cone. Grinding wheel characteristic was evaluated with stylus by expanding the scanning region of the profilometer from a straight line to a plane. Each grain's diameter and semi-angle are assumed as normal distribution, each grain's protrusion height from wheel plane is assumed gamma distribution. So grinding wheel is simulated with grain's position randomly distributed without overlapping. Ground surface is 3-dimensionally simulated considering ridge formation of workpiece by each grain's cutting, and then surface profile and surface roughness parameters are compared with real ground workpiece.

  • PDF

Characteristics of Mesoscale Circulation with the Detailed Building Distribution in Busan Metropolitan Area (부산지역 빌딩 분포 상세화에 따른 중규모 순환 특성)

  • Son, Jeong-Ock;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • In order to clarify the impacts of thermal difference in atmospheric boundary layer due to the different sophistication of building information in Busan metropolitan areas, several numerical simulations were carried out. ACM (Albedo Calculation Model) and WRF (Weather Research and Forecasting) was applied for estimating albedo and meteorological elements in urban area, respectively. In comparison with coarse aggregated and small buildings, diurnal variation of albedo is highly frequent and its total value tend to be smaller in densely aggregated and tall buildings. Estimated TKE and sensible heat flux with sophisticatedly urban building parameterization is more resonable and valid values are mainly induced by urban building sophistication. The simulation results suggest that decreased albedo and increased roughness due to skyscraper plays an important role in the result of thermal change in atmospheric boundary layer.

Friction Characteristics of Piston Ring Pack with Consideration of Mixed Lubrication: Parametric Investigation

  • Kim, Ji-Young;Kim, Jee-Woon;Cho, Myung-Rae;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.468-475
    • /
    • 2002
  • This paper reports on the friction characteristics of a piston ring pack with consideration of mixed lubrication. The analytical model is presented by using the average flow antral asperity contact model. The effect of operating condition, and design parameters on the MOFT, maximum friction force, and mean frictional power loss are investigated. Piston ring prick shows mixed and hydrodynamic lubrication characteristics. From the predicted results, it was fand that the ring tension and height of surface roughness have great influence on the frictional power losses in a ring pack. Especially, ring tension is a dominant factor for the reduction of friction loss and maintenance of oil film thickness.

The Flow Factors considered the Elastic Deformation of Rough surface of Nongaussian Height Distribution (비정규 높이 분포 표면의 탄성변형을 고려한 Flow Factor)

  • Choi Sung-Sik;Kim Tae-Wan;Koo Young-Pil;Cho Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.201-209
    • /
    • 2003
  • In the mixed lubrication regime, the roughness effects are very important due to the presence of interacting asperities. An average Reynolds equation using flow factors is very useful to determine effects of surface roughness on mixed lubrication. In this paper, the pressure flow factors and shear stress factor for Gaussian and non-Gaussian surfaces are evaluated in terms of kurtosis and skewness. particularly, the elastic deformation of the surface is considered.

  • PDF

Effect of surface condition on CHF in pool boiling systems: Research Issues (수조 비등에서 표면 특성이 CHF 에 미치는 영향에 대한 연구 동향 고찰)

  • Yeom, Su-Jin;An, Sang-Mo;Lee, Seung-S.;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2578-2582
    • /
    • 2008
  • In predicting the critical heat flux (CHF) in pool boiling systems, the contact angle between the boiling surface and the liquid and the surface roughness are considered to be the important parameters. From the microscopic viewpoint, those are affected by the micro/nano structure of the surface. Several studies have been reported on the dependence of CHF on the surface microstructure such as height and width of the cavities and distances between them. In this paper, the effects of the boiling surface characteristics on CHF are reviewed and the future research issues are discussed for better prediction of CHF.

  • PDF

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.

Estimation of Bed Resistance in Gravel-bed Rivers Using the Equivalent Roughness Height (등가조고를 이용한 자갈하천의 하상저항 산정)

  • Kim, Ji-Sung;Kim, Yong-Jeon;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.619-629
    • /
    • 2009
  • The objective of this study is to estimate bed-resistance in gravel-bed rivers using the equivalent roughness height($k_s$). We calculated the friction factor(f) with the measured data from 8 domestic gravel-bed rivers and investigated the size distributions of the bed materials. The averaged $k_s$ in each cross-section, which is determined under the hypothesis that the vertical velocity distribution follows the logarithmic law, is compared with the reach $k_s$ which is calculated with the cumulative grain diameter distribution curve of bed materials. Moreover, the applicability of existing formulae, such as Strickler type equations, is examined by comparing with Manning's n value converted from the $k_s$. According to the results, the reach $k_s$ proves to be a good indicator of representative characteristic of bed materials in a reach, and the Manning's n based on the reach $k_s$ is appropriate for practical estimation of the bed-resistance, for RMS errors between calculated and measured Manning's n is less than 0.003. The correlation between the $k_s$ and specified bed-material size($D_i$) is very low, so it is difficult to select a proper one among the existing empirical equations.

A Study on Enhanced Tubes for Electric Utility Steam Condensers (발전소 수증기 응축기용 전열 촉진관에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • A computer program that simulates electric utility steam condensers was developed, and used to investigate the effects of enhanced tubes in steam condensers. The replacement of smooth tubes with enhanced tubes reduces the steam condensing temperature, and increases the efficiency of the electric utility. Therefore, a significant amount of power may be reserved without any modification of the utility. Three enhanced tubes, corrugated, low fin with internal ribs, and low fin with internal 3-D roughness, were considered. The results showed that there is an optimal internal roughness height. Low fin tubes with a 3-D roughness were superior to the other enhanced geometries. This was attributed to longitudinal vortices generated between the circumferential dimples. An additional 0.5 MW~1.3 MW was possible when smooth tubes were replaced with enhanced tubes in the 600 MW electric utility condenser. The additional power increased with increasing coolant temperature. More investigations on fouling, corrosion, and mechanical properties will be necessary for actual applications of enhanced tubes in electric utility condensers.