• Title/Summary/Keyword: roughness element

Search Result 147, Processing Time 0.025 seconds

Effects of Composition and Temperature on the Descaling Characteristics in Si Containing Steel (Si 첨가강의 Descaling 특성에 미치는 강조성 및 가열온도의 영향)

  • Choi J. W.;Kwon S. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.277-284
    • /
    • 2004
  • Low carbon steels containing Si of up to $1.2\;wt\%$ were oxidized in air at 1373 K and 1523 K, i.e. below and above the eutectic temperature of FeO and $Fe_2SiO_4$. The influence of a impurity element, S on behavior of scale formation during oxidation was investigated by using $M\"{o}chssbauer$ spectroscopy and EDS. This allowed establishment of an interface oxidation model of Si-added steel depending on temperature and an impurity element. A compound of FeO and FeS was formed in the scale/matrix interface of low carbon steels containing S of up to $0.03\;wt\%$ oxidized above 1213 K of the eutectic temperature. This was flat formed between $Fe_2SiO_4$ nodules along the scale/matrix interface without selective oxidation. It is due to low viscosity and high wettability of the compound of FeO and FeS in liquid. Conventional metallographic examinations revealed that roughness of the scale/matrix interface in Si-added steels became flat as the content of S increased. It was independent of oxidizing temperature and Si content. Effects of oxidizing temperature and an impurity element content on descaling characteristics in Si-added steels were evaluated by using a hydraulic descaling simulator. Good descaling characteristics was attributable to this flatness of the scale/matrix interface.

  • PDF

Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements (지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.289-300
    • /
    • 2015
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In conventional approaches to predicting rail noise, the rail is regarded as placed in a free space so that the reflection from the ground is not included. However, in order to predict rail noise close to the rail, the effect of the ground should be contained in the analysis. In this study the rail noise reflected from the ground is investigated using the wavenumber domain finite element and boundary element methods. First, two rail models, one using rail attached to the rigid ground and one using rail located above rigid ground, are considered and examined to determine the rigid ground effect in terms of the radiation efficiency. From this analysis, it was found that the two models give considerably different results, so that the distance between the rail and the ground is an important factor. Second, an impedance condition was set for the ground and the effect of the ground impedance on the rail noise was evaluated for the two rail models.

Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model

  • Kim, JungHoon;Zi, Goangseup;Van, Son-Nguyen;Jeong, MinChul;Kong, JungSik;Kim, Minsung
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.443-457
    • /
    • 2011
  • The loss of strength in a structure as a result of cyclic loads over a period of life time is an important phenomenon for the life-cycle analysis. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. Structural components unavoidably are affected by defects such as surface scratches, surface roughness and weld defects of random sizes, which usually occur during the manufacturing and handling process. These defects are shown to have an important effect on the fatigue life of the structural components by promoting crack initiation sites. The value of equivalent initial flaw size (EIFS) is calculated by using the back extrapolation technique and the Paris law of fatigue crack growth from results of fatigue tests. We try to analyze the effect of EIFS distribution in a multiple site damage (MSD) specimen by using the extended finite element method (XFEM). For the analysis, fatigue tests were conducted on the centrally-cracked specimens and MSD specimens.

Modeling wind ribs effects for numerical simulation external pressure load on a cooling tower of KAZERUN power plant-IRAN

  • Goudarzi, Mohammad-Ali;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.479-496
    • /
    • 2008
  • In this paper, computer simulation of wind flow around a single cooling tower with louver support at the base in the KAZERUN power station in south part of IRAN is presented as a case study. ANSYS FLOTRAN, an unstructured finite element incompressible flow solver, is used for numerical investigation of wind induced pressure load on a single cooling tower. Since the effects of the wind ribs on external surface of the cooling tower shell which plays important role in formation of turbulent flow field, an innovative relation is introduced for modeling the effects of wind ribs on computation of wind pressure on cooling tower's shell. The introduced relation which follows the concept of equivalent sand roughness for the wall function is used in conjunction with two equations ${\kappa}-{\varepsilon}$ turbulent model. In this work, the effects of variation in the height/spacing ratio of external wind ribs are numerically investigated. Conclusions are made by comparison between computed pressure loads on external surface of cooling tower and the VGB (German guideline for cooling tower design) suggestions.

Fabrication of Hemoglobin/Silver Nanoparticle Heterolayer for Electrochemical Signal-enhanced Bioelectronic Application

  • Lee, Taek;Yoon, Jinho;Choi, Jeong-Woo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.556-560
    • /
    • 2017
  • A hemoglobin/silver nanoparticle heterolayer was fabricated for bioelectronic device with electrochemical signal-enhancement effect. As a device element, a hemoglobin, the metalloprotein, contained the heme group that showed the redox property was introduced for charge storage element. For electron transfer facilitation, a silver nanoparticle was introduced for electrochemical signal facilitation, the hemoglobin was immobilized onto Au substrate using chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the silver nanoparticle was immobilized onto fabricated hemoglobin/6-MHA heterolayers by layer-by-layer (LbL) method. The surface morphology and surface roughness of fabricated heterolayer were investigated by atomic force microscopy (AFM). The redox property of hemoglobin/silver nanoparticle heterolayer was investigated by a cyclic voltammetry (CV) experiment for obtaining an oxidation potential and reduction potential. Moreover, for the assessing charge storage function, a chronoamperometry (CA) experiment was conducted to hemoglobin/silver nanoparticle-modified heterolayer electrode using oxidation and reduction potentials, respectively. Based on the results, the fabricated hemoglobin/silver nanoparticle heterolayer showed that an increased charge storage effect compared to hemoglobin monolayer-modified electrode.

Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types (접촉면 처리 방식에 따른 석탑의 내진 특성 평가)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Won, Tae-Ho;Jeon, Geon-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.

Reduction of Vibration Responses of a Bridge due to Vehicles (차량으로 인한 다리의 진동응답을 줄이는 방법)

  • Lee, Gun-Myung;Ju, Young-Ho;Park, Mun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • The responses of a bridge due to a moving vehicle are obtained analytically by modeling a vehicle as a constant point force. From the results it is found that the responses after a vehicle leaves the bridge become very small for some speeds of a vehicle. When a vehicle is modeled as a two dof system for a more accurate analysis, the same phenomenon is observed while the roughness of the surface of the bridge is small. Determining the fundamental frequency of a bridge so that one of the above speeds coincides with a frequent speed of vehicles, the responses of a bridge can be minimized.

Partial-EHL Analysis of Wheel Bearing for a Vehicle (자동차용 휠 베어링의 부분탄성유체윤활 해석)

  • Kim Dong-Won;Lee Sang-Don;Cho Yong-Joo
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.289-295
    • /
    • 2005
  • Most machine element, such as gears and bearings, are operated in the mixed lubrication region. Contact between two asperities has an effect on machine life by increasing local pressure. To estimate fatigue life exactly, asperity contact should be considered as a factor of fatigue life because this happening produce friction, abrasion and make flash temperature. In this paper, asperity contact is considered as a result of film breakdown when lubricant pressure is not enough to separate two asperities. Contact pressure is calculated to asperity overlap region and added to lubricant pressure. For this model, numerical procedure is introduced and the result on surface roughness and velocity for wheel bearing is presented. Results of EHL analysis for wheel bearing show that asperity contact is occurred at the edge ofEHL conjunction where has a insufficient lubricant pressure to separate two surface.

Stress distribution on the real corrosion surface of the orthotropic steel bridge deck

  • Kainuma, Shigenobu;Jeong, Young-Soo;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1479-1492
    • /
    • 2015
  • This study evaluated the localized stress condition of the real corroded deck surface of an orthotropic steel bridge because severe corrosion damage on the deck surface and fatigue cracking were reported. Thus, a three-dimensional finite element (FE) analysis model was created based on measurements of the corroded orthotropic steel deck surface to examine the stress level dependence on the corrosion condition. Based on the FE analysis results, it could be confirmed that a high stress concentration and irregular stress distribution can develop on the deck surface. The stress level was also increased by approximately 1.3-1.5 times as a result of the irregular corroded surface. It was concluded that this stress concentration could increase the possibility of fatigue cracking in the deck surface because of the surface roughness of the orthotropic steel bridge deck.

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.