• Title/Summary/Keyword: rotor diagnosis

Search Result 120, Processing Time 0.023 seconds

Fault Diagnosis of Rotor Bars in a Single Phase Induction Motor Monitoring Electromechanical Parameters (기전연성계 해석을 이용한 단상유도전동기의 회전자 결함진단에 관한 연구)

  • Park, S.J.;Chang, J.H.;Jang, G.H.;Lee, Y.B.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.802-808
    • /
    • 2000
  • This paper characterizes the electromechanical parameters due to the fault of rotor bars in a squirrel cage induction motor. Simulation is performed to investigate how broken rotor bars have effect on them by solving the time-stepping finite element equation coupled with magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bar introduces the beating phenomenon in time domain and the sideband frequencies in frequency spectra, respectively, to the stator current, torque, speed, magnetic force and vibration of a rotor. However, vibration of a rotor would be the most effective monitoring parameters to detect the faults of rotor bars.

  • PDF

Predictions of Short-Circuit Characteristics of Rotor Windings in a Generator using Electromagnetic Analysis (전자장해석을 통한 발전기 회전자권선 단락특성 예측)

  • Kim, Dong-Hun;Song, Myung-Kon;Park, Jung-Shin;Lee, Dong-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.572-576
    • /
    • 2006
  • As the increasing of capacity and technology of power facilities, rotating machines such as turbine generators and water turbines are getting higher at capacity but smaller in size. Thus the monitoring and diagnosis of generators for fault detection and protection has attracted intensive interest. Most of electrical faults of rotating machines appear in their windings. In case of an after-fault in high capacity rotating machines, the recovering cost is usually very expensive and additional time is necessary for returning in a normal situation. In this paper, the magnetic flux patterns in air-gap of a generator under various fault states as well as a normal state are simulated by a conventional FEM tool. These results are successfully applied to detection and diagnosis of the short-circuit condition in rotor windings of a high capacity generator.

A study on the diagnosis of rater faults through the current analysis (전동기 전류분석을 통한 회전자회로 고장진단에 관한연구)

  • Lee, Y.S.;Kwon, J.L.;Lee, K.J.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.801-803
    • /
    • 2003
  • Faults in induction motors can be categorized into mechanical faults and electrical faults, and most mechanical faults result from inferiority or damage of the bearing, while most electrical faults derive from insulation faults of stator windings and rotor bar cracks. When a crack appears on the rotor bar, its efficiency decreases, which increases energy consumption and temperature, reducing the life span of the motor. This kind of fault can only be sensed by the protection relay after the condition has worsened to a certain degree, bringing massive economic loss. This paper will deal with the diagnosis method of rotor bar faults through the load current analysis method of the motor used during operation.

  • PDF

A Method for Indentifying Broken Rotor Bar and Stator Winding Fault in a Low-voltage Squirrel-cage Induction Motor Using Radial Flux Sensor

  • Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, a method for detecting broken rotor bar and stator winding fault in a low voltage squirrel-case induction motor using an air-gap flux variation analysis is proposed to develop a simple and low cost diagnosis technique. To measure the leakage flux in radial direction, a radial flux sensor is designed as a search coil and installed between stator slots. The proposed method is able to identify two kinds of motor faults by calculating load condition of motors and monitoring abnormal signals those are related with motor faults. Experimental results obtained on 7.5kW three-phase squirrel-cage induction motors are discussed to verify the performance of the proposed method.

Diagnosis of Cryogenic Pump-Motor Systems Using Vibration and Current Signature Analysis

  • Choi Byeong-Keun;Kim Hak-Eun;Gu Dong-Sik;Kim Hyo-Jung;Jeong Han-Eul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.972-980
    • /
    • 2006
  • In general, to send out natural gas via a pipeline network across the nation in LNG terminal, high-pressure cryogenic pump supply highly compressed LNG to high-pressure vaporization facilities. The Number of cryogenic pumps determined the send-out amount in LNG receiving terminal. So it is main equipment at LNG production process and should be maintained on best conditions. In this paper, to find out the cause of high vibration at cryogenic pumps-motor system in LNG terminal, vibration spectrum analysis and motor current signature analysis have been performed together. Through the analysis, motor rotor bar problems are estimated by the vibration analysis and confirmed by the current analysis. So, it is demonstrated through the case study in this paper, how performing vibration analysis and current signature analysis together can reliable diagnosis rotor bar problems in pump-motor system.

Study of Rotor Asymmetry Effects of an Induction Machine by Finite Element Method

  • Abdesselam, Lebaroud;Guy, Clerc
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • This paper presents a study on rotor asymmetry caused by broken bars and its effects on the stator current of an induction machine under an unbalanced supply voltage. The simulation of the induction machine is based on the finite element method. In the early stage of diagnosis, we show new sidebands specific to the partial rupture of the rotor bar. Experimental tests corroborate with the simulation results.

A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

  • Wang, Chao;Liu, Xiao;Liu, Hui;Chen, Zhe
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estimated rotor position and the actual output of the position sensor. Extreme Learning Machine (ELM), which could build a nonlinear mapping among flux linkage, current and rotor position, is utilized to design an assembled estimator for the rotor position detection. The data for building the ELM based assembled position estimator is derived from the magnetization curves which are obtained from Finite Element Analysis (FEA) of an SRWG with the structure of 8 stator poles and 6 rotor poles. The effectiveness and accuracy of the proposed fault diagnosis method are verified by simulation at various operating conditions. The results provide a feasible theoretical and technical basis for the effective condition monitoring and predictive maintenance of SRWG.

Demagnetization Diagnosis of Permanent Magnet Synchronous Motor Using Frequency Analysis at Standstill Condition

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.249-254
    • /
    • 2016
  • Recently, electric vehicles have got significant attention because it is more eco-friendly and efficient than internal combustion engine vehicles. Instead of an internal combustion engine, the electric vehicle has a motor for propulsion. The permanent magnet synchronous motor which has permanent magnet instead of field winding in the rotor has especially higher efficiency and power density than other types of motor. When the irreversible demagnetization is occurred, drivers are exposed to high risk of accident by the fault operation of motor. Therefore, the irreversible demagnetization of permanent magnet should be detected to reduce the risk of accident. In this study, the demagnetization diagnosis method based on the result of locked rotor test is proposed. Based on short measurement time, the proposed diagnosis method aims to detect the demagnetization fault when an electric vehicle is at a complete standstill. The proposed method is verified through the finite element analysis.

Diagnosis on the Clearance of Rotating Machinery using Correlation Dimension (상관차원을 이용한 회전기계의 간극 진단)

  • Park, Sang-Moon;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.134-139
    • /
    • 2004
  • The correlation dimension of a nonlinear method for the diagnosis on the clearance of rotating machinery is introduced in this paper. The correlation dimension can provide some intrinsic information of an underlying dynamic system by reconstructing measured scalar time series. Vibration signals measured from a rotor with different operating conditions are analyzed using the correlation dimension. The results show that the correlation dimension method can identify the magnitude of the clearance of a rotor and the lubricating condition.

  • PDF