• Title/Summary/Keyword: rotifers biomass

Search Result 20, Processing Time 0.018 seconds

Characteristic Community Dynamics of Phyto- and Zooplankton in a Shallow Eutrophoic Reservoir (얕은 부영양 저수지의 동${\cdot}$식물플랑크톤 군집변화 특성)

  • Kim, Ho-Sub;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.18-29
    • /
    • 2005
  • This study was conducted to understand seasonal dynamics of phyto- and zooplankton communities in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004. Cyanophyceae dominated throughout the year, except for spring (March ${\sim}$ May) when Bacillariophyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) were dominant. The change of dominant species in Cyanophytes occurred in June and December 2003, and the increase of phytoplankton cell density in July and November was observed when the P loading through two inflows was high. In May, Oscillatoria spp. and Aphanizomenon sp. were dominant, but replaced by Microcystis spp. in the end of May. Dominant Microcystis spp. sustained until December and shifted to Oscillatoria spp. and Aphanizomenon sp. TN/TP ratio ranged from 13 to 46 (Avg. $27{\pm}6$) from June to December when cyanobacteria (Microcystis spp.) dominated. Rotifers such as Keratella cochlearis, Keratella valga, Polyarthra spp., Conochilus unicornis, Pompholyx complanata dominated in average 67.8% of the zooplankton community. Abundance of zooplankton was the highest in June 2003, when Pompholyx complanata (12,388 ind $L^{-1}$) was dominant. In May, the significant increase of Conochilus unicornis biomass ($1,048{\pm}28\;{\mu}g\;C\;L^{-1}$) was observed with distinct improvement of transparency ($Z_{eu}/\;Z_m=\;1.1$). These results suggest that the seasonal variation of phytoplankton communities in this reservoir are to be understood as results of multi-interactive factors such as temperature, light condition and nutrients, and small-sized rotifers as important predator.

Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.390-401
    • /
    • 2006
  • This study was conducted to understand the phytoplankton-zooplankton trophic linkage in Lake Paldang ecosystems (Paldang Dam and Kyungan Stream) from April to December 2005. Zooplankton were filtered as two size groups (microzooplankton (MICZ): 60{\sim}20\;{\mu}m$, macrozooplankton (MACZ): >$200\;{\mu}m$), and their clearance rates and C-fluxes on phytoplankton were measured. Grazing experiments were performed in the laboratory with the different zooplankton densities (0, 2, 4, 8x of ambient density, n=2). Diatoms, such as Aulacoseira and Cyclotella were dominant phytoplankton taxa at both sites. Among phytoplankton communities, total carbon biomass of phyflagellates was much higher than others at both sites. Rotifers numerically dominated zooplankton community, while cladocerans dominated carbon biomass. Both phytoplankton and zooplankton density and biomass were high in spring, but decreased markedly after summer monsoon season. plankton biomass at Kyungan Stream was significantly higher than that of Paldang Dam. Zooplankton clearance rate and amount of C-flux were relatively high in the spring and then decreased after summer at both sites. Seasonal change of C-flux was similar to that of zooplankton biomass (P<0.001, n=7). MACZ clearance rate and C-flux were higher than those of MICZ. Water residence time and physical disturbance in summer appeared to affect zooplankton grazing on phytoplankton at the study sites. Our results indicate phytoplankton were an important energy source for zooplankton in Lake Paldang ecosystem. Furthermore, C-flux of plankton food web is affected by not only biological components but also physical parameters.

Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤의 박테리아 섭식 및 영향인자)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.424-434
    • /
    • 2006
  • This study investigates bacteria-zooplankton grazing link and factors affecting their grazing relationship at trophically different two sites (Paldang Dam and Kyungan Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were divided into two size groups; microzooplankton (MICZ) : 60-200 ${\mu}m$ and macrozooplankton (MACZ): >200 ${\mu}m$), and their grazing rates on bacteria were conducted for each size group separately. Bacterial abundance and seasonal change pattern were similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Polyathra) were numerically dominant at both sites, while carbon biomass was highest in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compared to Paldang Dam site, and their high biomass during spring decreased as they were passing through the storm events in summer season at both sites. Zooplankton clearance rate (CR) was high in spring and autumn while low in summer at Paldang Dam site. However, zooplankton CR was high during the summer at Kyungan Stream site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans) developed at a high biomass level at both sites. Overall, MACZ community CR and carbon flux (C-flux) were higher than those of MICZ, and the degree of difference between them was higher at Kyungan Stream site. Short hydraulic residence time and physical disturbance caused by summer storm event appeared to affect the zooplankton grazing on bacteria at both sites. The results of this study indicate that bacteria are potentially important carbon source of zooplankton, and that both biotic (e.g,, prey and predator taxa composition and abundance) and physical parameters appear to alter energy transfer in the planktonic food web of this river-reservoir hybrid system.

Characteristics and Inter-annual Variability of Zooplankton Dynamics in the Middle Part of the River (Nakdong River) (낙동강 중류지점에서의 동물플랑크톤 동태의 연간 변이 및 특성(낙동강))

  • Chang, Kwang-Hyeon;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.412-419
    • /
    • 2005
  • The dynamics of zooplankton community and its relationship with environments were studied at the middle stretch (Waekwan, RK; river kilometer; above 175 km from the estuary dam) of large regulated river, Nakdong River from 1998 to 2002. There were distinct inter-annual variations and seasonal changes in total zooplankton abundance in the study site (ANOVA, p<0.01), displaying similar pattern in three years from 1999 to 2001 except 1998 and 2002. The annual average rotifers abundance during the study period was 43${\pm}76 ind. $L^{-1}$ (mean${\pm}$s.d., n = 118), followed by adult copepodids (1.6${\pm}$4.8 ind. $L^{-1}$), and small cladocerans (0.4${\pm}$1.2 ind. $L^{-1}$). Among the rotifers, Brachionus spp. Polyarthra spp., Colurella spp., Keratella spp.·, and Trichocerca spp. were the most common taxa. These species occupied more than 80% of the total rotifer abundance throughout the study period. Total zooplankton abundance rapidly increased in spring and fall and remained low throughout the winter. During summer, zooplankton dynamics seemed to be largely affected by hydrological parameters. Overall, rather the external factors (hydrological factors of the river) than internal factors (food condition for zooplankton such as phytoplankton biomass) appear to be responsible for changes in zooplankton dynamics in the middle stretch of the river.

Detecting response patterns of zooplankton to environmental parameters in shallow freshwater wetlands: discovery of the role of macrophytes as microhabitat for epiphytic zooplankton

  • Choi, Jong-Yun;Kim, Seong-Ki;Jeng, Kwang-Seuk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Freshwater macrophytes improve the structural heterogeneity of microhabitats in water, often providing an important habitat for zooplankton. Some studies have focused on the overall influence of macrophytes on zooplankton, but the effects of macrophyte in relation to different habitat characteristics of zooplankton (e.g., epiphytic and pelagic) have not been intensively studied. We hypothesized that different habitat structures (i.e., macrophyte habitat) would strongly affect zooplankton distribution. We investigated zooplankton density and diversity, macrophyte characteristics (dry weight and species number), and environmental parameters in 40 shallow wetlands in South Korea. Patterns in the data were analyzed using a self-organizing map (SOM), which extracts information through competitive and adaptive properties. A total of 20 variables (11 environmental parameters and 9 zooplankton groups) were patterned onto the SOM. Based on a U-matrix, 3 clusters were identified from the model. Zooplankton assemblages were positively related to macrophyte characteristics (i.e., dry weight and species number). In particular, epiphytic species (i.e., epiphytic rotifers and cladocerans) exhibited a clear relationship with macrophyte characteristics, while large biomass and greater numbers of macrophyte species supported high zooplankton assemblages. Consequently, habitat heterogeneity in the macrophyte bed was recognized as an important factor to determine zooplankton distribution, particularly in epiphytic species. The results indicate that macrophytes are critical for heterogeneity in lentic freshwater ecosystems, and the inclusion of diverse plant species in wetland construction or restoration schemes is expected to generate ecologically healthy food webs.

Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam) (수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학)

  • Kim, Ho-Sub;Park, Je-Chul;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.286-294
    • /
    • 2003
  • This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

Assessing the Plankton Dynamics in Lakes and Reservoirs Ecosystem in the Southwestern Parts of Korea (국내 남서부지역 호수 및 저수지 생태계의 플랑크톤 동태 변화)

  • Kim, Hyun-Woo;La, Geung-Hwan;Jeong, Kwang-Seuk;Park, Jong-Hwan;Huh, Yu-Jung;Kim, Sang-Don;Na, Jeong-Eun;Jung, Myoung-Hwa;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • This study compares and contrasts the dynamics of plankton in 31 temperate lakes and reservoirs, and considers particularly the biomass ratio of zooplankton to phytoplankton and ecological model application. A total of 89 species of zooplankton were identified (70 rotifers, 14 cladocerans and 5 copepods) and a total of 554 species of phytoplankton were identified (176 Bacillariophyceae, 237 Chlorophyceae, 68 Cyanophyceae, and 73 other algal taxa). The total plankton abundance and species diversity were showed distinctive spatial and seasonal variation. Annual average phytoplankton density was $7,350{\pm}15,592$ cells $mL^{-1}$ (n=124), and the lowest was $855{\pm}448$ cells $mL^{-1}$ (n=4), while the highest was $72,048{\pm}13,4631$ cells $mL^{-1}$ (n=4). For zooplankton, small rotifer groups dominated the study sites, and approximately 3~10 species appeared in the study sites. Statistical analysis and an ecological model application revealed that the size of reservoirs affected the structure size of plankton community, i.e. relatively large number of species were found in smaller reservoirs. From this result, we can conclude that management strategy for the reservoir environment has to be focused more on small-size reservoirs, in terms of plankton community ecology.

Plankton Community in Weir Section of the Nakdong River and Its Relation with Selected Environmental Factors (낙동강 보 구간의 플랑크톤 군집조성과 환경요인에 의한 영향 분석)

  • Seo, Dong-Il;Nam, Gui-Sook;Lee, Sang-Hyup;Lee, Eui-Haeng;Kim, Mirinae;Choi, Jong-Yun;Kim, Jeong-Hui;Chang, Kwang-Hyeon
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • Phytoplankton and zooplankton communities were investigated from 8 weir sites of the Nakdong River system to provide basic information on plankton community after weir construction and to estimate its effects on major water quality parameters. The relationship between plankton community structure and environmental factors was analysed with CCA (Canonical Correspondence Analysis). The results suggested that discharge and total phosphorus and nitrogen concentrations are important factors determining the phytoplankton species composition. For zooplankton community, the difference in discharge between September and October induced different distribution pattern of zooplankton community with more homogeneous distribution with extreme dominance of rotifers during the high discharge season. Chlorophyll a concentration representing phytoplankton biomass has been suggested as the main environmental factor affecting zooplankton community followed by COD and total nitrogen concentration.

Application of Zooplankton Index for Korean Lake Health Assessment; Verification of Community Index for Lake Assessment Using Multi Metric (호소생태계 건강성 평가를 위한 동물플랑크톤 MMI의 국내 적용 연구)

  • Yerim Choi;Hye-Ji Oh;Hyunjoon Kim;Geun-Hyeok Hong;Dae-Hee Lee;Ihn-Sil Kwak;Chang Woo Ji;Young-Seuk Park;Yong-Jae Kim;Kwang-Hyeon Chang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.70-82
    • /
    • 2023
  • Recently, Korean government has introduced Multi Metric Indices (MMI) using various biocommunity information for aquatic ecosystem monitoring and ecosystem health assessment at the national level. MMI is a key tool in national ecosystem health assessment programs. The MMI consists of indices that respond to different target environmental factors, including environmental disturbance (e.g. nutrients, hydrological and hydraulic situation of site etc.). We used zooplankton community information collected from Korean lakes to estimate the availability of candidate zooplankton MMI indices that can be used to assess lake ecosystem health. First, we modified the candidate indices proposed by the U.S. EPA to suit Korean conditions. The modified indices were subjected to individual index suitability analysis, correlation analysis with environmental variables, and redundancy analysis among indices, and 19 indices were finally selected. Taxonomic diversity was suggested to be an important indicator for all three taxonomic groups (cladoceran, copepod, rotifer), on the other hand, the indices using biomass for large cladocerans and copepods, while the indices using abundance were suggested for small cladocerans and rotifers.

Effect of Filter-feeding Bivalve (Corbiculidae) on Phyto- and Zooplankton Community (여과 섭식성 패류가 동 ${\cdot}$ 식물플랑크톤 군집에 미치는 영향)

  • Kim, Ho-Sub;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.319-331
    • /
    • 2004
  • This study was conducted to evaluate the ecological impact of freshwater bivalve (Corbiculidae) on plankton communities in experimental enclosure systems (2 m ${\times}$ 2 m ${\times}$ 2 m). During the acclamation period of one month, cyanobacteria, including Microcystis viridis and Microcystis aeruginosa, dominated in both control and treatment enclosures with no noticeable density difference. After the addition of 100 mussels, dominant species of phytoplankton shifted from Microcystis to Scenedesmus in concert with slight decrease in the cell density and the increase of N/P ratio. However, cell density in the control quickly increased, accompanied with changes of dominant species to Oscillatoria spp. With the introduction of additional 500 musseles in the treatment enclosure, dominant phytoplankton species in both enclosures were replaced with Selenastrum spp. and Cryptomonas sp. In the initial stage, the total zooplankton abundance in the control was higher than that of treatment, but it was reversed after the addition 100 mussels. After mussel density increased up to 600 indivisuals, zooplankton density in the treatment decreased with dominance of small taxa, such as rotifers and nauplius. However, abundance and carbon biomass of large zooplankton, such as Bosmina longirostris and Diacyclops thomasi were maintained in a high level compared with those of control. During the study period, Chl. a concentration in mussel treatment and control increased with DIP and $NH_3-N$, respectively. Due to the increase of $NH_3-N$, especially after the introduction of additional 500 mussels, nitrogen limitation did not occur in the treatment enclosure in contrast with strong nutrient limitation occurred in the control. These results indicate that filter-feeding Corbicula could exert important impact on nutrient recycling and plankton community structure in a freshwater ecosystem, through direct feeding and competition for the same food resource as zooplankton on one hand, and through alteration of nutrient availability on the other.