Effect of Filter-feeding Bivalve (Corbiculidae) on Phyto- and Zooplankton Community

여과 섭식성 패류가 동 ${\cdot}$ 식물플랑크톤 군집에 미치는 영향

  • Kim, Ho-Sub (Watershed Management Research Division, National Institute of Environmental Research) ;
  • Kong, Dong-Soo (Watershed Management Research Division, National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • 김호섭 (국립환경연구원 수질오염총량과) ;
  • 공동수 (국립환경연구원 수질오염총량과) ;
  • 황순진 (건국대학교 환경과학과)
  • Published : 2004.09.30

Abstract

This study was conducted to evaluate the ecological impact of freshwater bivalve (Corbiculidae) on plankton communities in experimental enclosure systems (2 m ${\times}$ 2 m ${\times}$ 2 m). During the acclamation period of one month, cyanobacteria, including Microcystis viridis and Microcystis aeruginosa, dominated in both control and treatment enclosures with no noticeable density difference. After the addition of 100 mussels, dominant species of phytoplankton shifted from Microcystis to Scenedesmus in concert with slight decrease in the cell density and the increase of N/P ratio. However, cell density in the control quickly increased, accompanied with changes of dominant species to Oscillatoria spp. With the introduction of additional 500 musseles in the treatment enclosure, dominant phytoplankton species in both enclosures were replaced with Selenastrum spp. and Cryptomonas sp. In the initial stage, the total zooplankton abundance in the control was higher than that of treatment, but it was reversed after the addition 100 mussels. After mussel density increased up to 600 indivisuals, zooplankton density in the treatment decreased with dominance of small taxa, such as rotifers and nauplius. However, abundance and carbon biomass of large zooplankton, such as Bosmina longirostris and Diacyclops thomasi were maintained in a high level compared with those of control. During the study period, Chl. a concentration in mussel treatment and control increased with DIP and $NH_3-N$, respectively. Due to the increase of $NH_3-N$, especially after the introduction of additional 500 mussels, nitrogen limitation did not occur in the treatment enclosure in contrast with strong nutrient limitation occurred in the control. These results indicate that filter-feeding Corbicula could exert important impact on nutrient recycling and plankton community structure in a freshwater ecosystem, through direct feeding and competition for the same food resource as zooplankton on one hand, and through alteration of nutrient availability on the other.

본 연구는 실험적으로 조성된 인공연못(2 m ${\times}$ 2 m ${\times}$ 2 m)에서 패류의 여과 섭식이 수체 내 물질순환과 플랑크톤 군집에 미치는 영향을 평가하기 위해 이루어졌다. 실험의 초기에는 처리구와 대조구 enclosure 모두에서 남조류인 Microcystis viridis와 M. aeruginosa 등이 우점하였고, 세포밀도와 생물량의 큰 차이는 없었다. 패류 100개체 투입 이후에 처리구에서 세포밀도의 감소와 수중 내 N/P의 증가와 더불어 우점종은 Microcystis에서 Scenedesmus로 바뀌었다. 반면에, 대조구에서의 세포밀도는 증가와 더불어 Oscillatoria spp.가 우점하였다. 패류 600개체 투입 이후에는 처리구와 대조구 모두에서 Selenastrum spp.와 Cryptomonas sp.가 우점하였다. 실험 초기 대조구에서의 동물플랑크톤 밀도는 처리구에 비해 높았으나 100개체 투입 이후에는 처리구에서 높았다. 패류 600개체 투입 이후에는 처리구에서 크기가 작은 윤충류와 요각류 유생들의 밀도가 감소하였으나, Bosmina longirostris, Diacyclops thomasi와 같은 크기가 큰 동물플랑크톤의 밀도와 생물량은 대조구에 비해 높았다. 실험기간 동안 엽록소 a농도의 증가는 처리구에서 수체 내 DIP농도가, 대조구에서는 암모니아농도가 상승한 직후에 나타났다. 처리구에서 600개체 투입 전후 시기동안 대조구에서는 TSI (Chl. a-TN)과 TSI (Chl. a-TP)가 모두 증가하였으나 처리구에서는 암모니아 농도의 증가로 인하여 질소 제한에 대한 변화가 나타나지 않았다. 이러한 결과들은 패류의 여과섭식이 수체내 영양염 이용율을 변화시키고, 동물플랑크톤과의 동일한 먹이원에 대한 경쟁 혹은 직접적인 섭식을 통해 수환경에서 물질 순환과 플랑크톤 군집 변화에 중요한 영향을 미칠 수 있음을 의미한다.

Keywords

References

  1. 권오길. 1984. 의암호 패류에 관한 연구. 한국육수학회지 17: 51-56
  2. 권오길, 박갑만. 1985. 의암호의 패류에 관한 연구. 한국육수학 회지 18: 27-38
  3. 권오길, 이상준, 박갑만. 1986. 의암호의 패류에 관한 연구. 한 국육수학회지 19: 51-56.
  4. 길봉섭. 1976. 전라북도산 담수패류의 분포와 현존량. 한국육 수학회지 9: 14-20
  5. 김범철, 김재옥, 전만식, 황순진. 1999. 소양호 동.식물플랑크톤의 계절변동. 한국육수학회지 32: 127-134
  6. 이춘구. 1976. 빗죽이의 패각생장에 관한 연구. 한국육수학회지 9: 45-48
  7. 조규송. 1993. 한국담수동물플랑크톤 도감. 아카데미서적
  8. 최기철. 1971. 대합과 가무락의 종패증산을 위한 생태학적 연구. 한국육수학회지 4: 9-20
  9. 최신석. 1976. 대합(Meretirix lusoria)의 인공방란 및 치패사육에 관한 연구. 한국육수학회지 9: 7-14
  10. 황순진, 김호섭, 최광현, 박정환. 2002. 국내 담수산 조개의 섭식활동이 호수 수질에 미치는 영향. 한국육수학회지 35: 92-102
  11. Andersen, A. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814
  12. Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplankton of the great lakes. A guide to the identification and ecology of the common crustacean species. The university of Wisconsin Press
  13. Belanger, S.E., J.L. Farris, D.S. Cherry and J. Cairns. 1985. Sediment preference of the freshwater Asiatic clam, Corbicula fluminea. The Nautilus 99: 66-73
  14. Boltvoskoy, D., I. Izaguirre and N. Correa. 1995. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312: 171-182
  15. Burton, R.F. 1983. Ionic regulation and water balance. pp
  16. 291-352. In: The Mollusca. (A.S.M. Saleuddin and K. M. Wilbur eds.). Academic Press, New York
  17. Christian, A.D. and D.J. Berg 2000. The role of unionid bivalves (Mollusca: Unionidae) in headwater streams. J. Amer. Benthologi. Soc. 17: p.189
  18. Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer. 1985, Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390
  19. Dame, R.F. 1996. Ecology of marine buvalves: An ecosystem approach. CRC Press, Boca Raton. p.254
  20. Davis, W.R., A.D. Christian and D.J. Berg. 2000. Seasonal nitrogen and phosphorus cycling by three unionid bivalves (Unionidae: Bivalvia) in headwater streams. pp.1-10. In: Freshwater Mollusk Symposium Proceeding. (R.S. Tankersley, D.O. Warmolts, G.T. Watters, B.J. Armitage, P.D. Johnson and R.S. Butler eds.) Ohio Biological Survey, Columbus, OH, USA
  21. Downing, J.A. and F.H.R. Rigler. 1984. A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell Scientific Publications. pp. 247-249
  22. Dumont, H.J., L.V. De Velde and S. Dumont. 1975. The dry weight estimate of biomass in a selection of cladocera, copepoda, and rotifera from the plankton, periphyton, and benthos of continental waters. Oeclogia 91: 75-97
  23. Fanslow, D.L., T.F. Nalepa and G.A. Lang. 1995. Filtration rates of the zebra mussel (Dreissena polymorpha) on natural seston from Saginaw Bay, Lake Huron. J. Great Lakes. Res. 21: 489-500
  24. Gardner, W.S., J.F. Cavaletto, T.H. Johengen, J.R., Johnson, R.T. Heath and J.B. Cotner. 1995. Effects of the zebra mussel, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 529-544
  25. Gilbert, J.J. and R.S. Stemberger. 1985. Control of Keratella populations by interference competition from Daphnia. Limnol. Oceanogr. 30: 180-188
  26. Hall, D.T., S.T. Threlkeld, C.W. Burns and P.H. Crowley. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177-208
  27. Heath, R.T., G.L. Fahnenstiel, W.S. Gardner, J.F. Cavaletto and S.-J. Hwang, 1995, Ecosystem-level effects of zebra mussel (Dreissena polymorpha): An enclosure experiment in Saginaw Bay, Lake Huron. J. GreatLakes Res. 21: 501-516
  28. Havens, K.E. 2000. Using Trophic state index (TSI) values to drow inferences regrading phytoplankton limiting factors and seston composition from routine water quality monitoring data. Kor. J. Limnol. 33:187-196
  29. Hecky, R.E. and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796-822
  30. Holland, R.E. 1993. Changes in plankton diatoms and water transparency in Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. J. Great Lakes Res. 19: 617-624
  31. Hwang, S.-J. 1996. Effects of zebra mussel (Dreissena polymorpha): on phytoplankton and bacterioplankton: Evidence for size-selective grazing. Kor. J. Limnol. 29: 363-378
  32. Hwang, S.-J., H.-S. Kim and J.-K. Shin, J.-M. Oh and D.-S. Kong. 2004. Grazing effects of a freshwater bivalve (Corbicula leana PRIME) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515: 161-179
  33. Hwang, S.-J., H.-S. Kim and J.-K. Shin. 2001. Filter- Feeding Effects of a freshwater Bivalve (Corbicula leana PRIME) on phytoplankton. Kor. J. Limnol. 34: 298-309
  34. James, M.R. 1987. Ecology of the freshwater mussel Hydridella mensiesi (Gray) in a small oligotrophic lake. Arch. Hydrobiol. 108: 337-348
  35. Johengen, T.H., T.F. Nalepa, G.L. Fahnenstiel and G. Goudy. 1995. Nutrient Canges in Saginaw Bay, Lake Huron, After the Establishment of the Zebra Mussel (Dreissena polymorpha). J. Great Lakes Res. 21: 449-464
  36. Kasprzak, K. 1986. Role of the Unionidae and Sphaeriidae (Mollusca, Bivalvia) in eutrophic lake Zbechy and its outflow. Inter. Revueder Gesamten Hydrobiol. 71: 315-334
  37. Kellar, P.E., S.A. Paulson and L.J. Paulson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Technical Report, Lake Mead Limnological Research Center, University of Nevada, Las Vegas, p. 234
  38. Kraemer, L.R. 1979. Corbicula (Bivalvia: Sphaeriaceae)vs. indigenous mussels (Bivalvia: Unionacea) in U.S. rivers: a hard case for interspecific competition? Am. Zool. 19: 1085-1096
  39. Kryger, J. and H.U. Riisgrd. 1988. Filtration rate capacities in six species of European freshwater bivalves. Oecologia 77: 34-38
  40. Lauritsen, D.D. 1986. Filter-feeding in Corbicula fluminea and its effect on seston removal. J. Amer. Benthologi. Soc. 5: 165-172
  41. Lauritsen, D.D. and S.C. Mozley, 1989. Nutrient excretion by the Asiatic clam Corbicula fluminea. J. Amer. Benthologi. Soc. 8: 134-172
  42. Leach, J.H. 1993. Impacts of the zebra mussel (Dreissena polymorpha) on water quality and fish spawning reefs in western Lake Erie. pp. 381-397. In : Zebra Mussels: Biology, Impact, and Control (T.F. Nalepa and D.W. Schloesser eds.). Lewis Publishers, Boca Raton, FL
  43. Maclsaac, H.J. and J.H. Sprules. 1991. Ingestion of smallbodied zooplankton by zebra mussels (Dreissena polymorpha): Can cannibalism on larvae influence population dynamics?. Can. J. Fish. Aquat. Sci. 48: 2051-2059
  44. Matisoff, G., J.B. Fisher and S. Matis. 1985. Effect of microinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia 122: 19-33
  45. McMahon, R.F. 1991. Mollusca: bivalvia. pp. 315-390. In: Ecology and Classification of North American Freshwater Invertebrates (J.H. Thorp and A.P. Covich eds.), Academic press, New York
  46. McMahon, F. 1983. The ecology of an invasive pest bivalve, Corbicula. In: The Mollusca, Volume 6, Academic Press
  47. Mikheyev, V.P. 1967. Filtration nutrition of the Dreissena. Tr. Vses. Nauchno-Issled. Inst Prud-Rybn. Khoz. 15: 117-129
  48. Mullin, M.M., P.R. Sloan and R.W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11: 307-311
  49. Nalepa, T.F., J.F. Cavaletto, M. Ford, W.M. Gordon and M. Wimmer. 1993. Seasonal and annual variation in weight and biochemical content of the zebra mussel, Dreissena polymorpha, in Lake St. Clair. J. Great Lakes Res. 19: 541-552
  50. Nicholls, K.H. and G.J. Hopkins. 1993, Recent changes in Lake Erie (north shore) phytoplankton: cumulativeimpacts of phosphorus loading reductions and the zebra mussel introduction. J. Great Lakes Res. 19: 637-647
  51. Pace, M.L. and J.D. Orcutt. 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822-830
  52. Petersen, F. 1983. Population dynamics and production of Daphnia galeata (Crustacea, Cladocera) in Lake Esrom. Holarct Ecology 6: 113-130
  53. Quigley, M.A., W.S. Gardner and W.M. Gordon. 1993. Metabolism of the zebra mussel (Dreissena polymorpha) in Lake St. Clair of the Great Lakes. pp. 295-306. In: Zebra Mussels: Biology, Impacts, and Contro. (Y.F. Nalepa and D.W. Schloesser eds.). Lewis Publishers/ CRC Press, Boca Raton, FL
  54. Reeders, H.H. and A. Bij de Vaate. 1992. Bioprocessing of polluted suspended matter from the water column by the zebra mussel (Dreissena polymorpha Pallas). Hydrobiologia 239: 53-63
  55. Shevtsova L.V., G.A. Zhdanova, V.A. Movchan, and A. B. Primak. 1986. Experimental interrelationship between Dreissena and planktic invertebrates. Hydrobiologia 22: 36-39
  56. Sprung, M. and U. Rose, 1988, Influence of food size and food quality of the feeding of the mussel Dreissena polymorpha. Oecologia 77: 526-532
  57. Stemberger, R.S. 1979. A guide to rotifers of the Laurentian Great Lakes. EPA-600/4-79-021
  58. Stites, D.L., A.C. Benke and D.M. Gillespie. 1995. Population dynamics, growth, and production of the Asiatic clam, Corbicula fluminea, in a blackwater river. Can. J. Fish. Aquat. Sci. 52: 425-437
  59. Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411-418
  60. Strayer, D.L. 1999. Effects of alien species on freshwater 17: 81-94
  61. Ten Winkel, E.H. and C. Davids. 1982. Food selection by Dreissena polymorpha Pallas (Mollusca: Bivalvia). Freshwater Biol. 12: 533-558
  62. Way, C.M., D.J. Hornbach, C.A. Miller-way, B.S. Payne and A. C. Miller. 1990. Dynamics of filter feeding in Corbicula fluminea (Bivalvia: Corbiculidae). Can. J.Zoo. 68: 115-120
  63. Welker, M. and N. Walz. 1998. Can mussels control the plankton in rivers?-A planktonological approach applying a Lagrangian sampling strategy. Limnol. Oceanogr. 43: 753-762
  64. Winter, J.E. 1973, The filtration rate of Mytilus edulis and its dependence of on algal concentration, measured by a continuous automatic apparatus. Mar. Biol. 22: 317-328
  65. Yamamuro, M. and I. Koike. 1993. Nitrogen metabolism of the filter-feeding bivalve Corbicula japonica and its significance in primary production of a brackish lake in Japan. Limnol. Oceanogr. 38: 997-1007