• Title/Summary/Keyword: rotational velocity

Search Result 426, Processing Time 0.027 seconds

NEWTONIAN COSMOLOGICAL PERTURBATIONS

  • Hwang, Jai-Chan
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.107-148
    • /
    • 1992
  • This paper presents a cosmological perturbation analysis in a Newtonian framework, using the Newtonian multi component version of the relativistic covariant equations. This work considers the fully nonlinear evolution of the perturbations, and is generalized to multicomponent systems and imperfect fluids. Known nonlinear solutions are presented in a general framework. Quasi-nonlinear analysis, considering both the compressible and rotational modes, is presented, including cases already known in the literature. The Fourier space representation of the conservation equations is also derived in a general context, with various decompositions of the velocity field. Commonly accepted cosmogonical frameworks are critically examined in the context of nonlinear evolution. This work may be regarded as the Newtonian counterpart of a recently presented general relativistic covariant formulation.

  • PDF

Design and Development of Shaker for Acceleration test of Gimbal (김발의 가속도 시험용 Shaker의 설계 및 개발)

  • Yoon, Jae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.147-153
    • /
    • 2001
  • This paper proposes a shaker system design for acceleration test of gimbal. Main reason of shaker system design is to give acceleration to the gimbal, which is moving and tracking the target on the tracking test equipment. The shaker system is mounted on the tracking test equipment. It uses the scotch yoke mechanism to have the constant movement in return. The Scotch yoke mechanism changes the rotational movement of constant velocity to simple harmonic motion.

  • PDF

An Experimental Study on the Wake Characteristics of a Quadrotor UAV (쿼드로터형 무인비행체의 후류 특성에 관한 실험적 연구)

  • Lee, Seungcheol;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • In the present study, we investigate the flow characteristics of a quadrotor UAV in a hovering mode by measuring multiple two-dimensional velocity fields in the wake. The experiment is conducted at Re = 24,000 in a chamber large enough to neglect the ground effect, where Re is the Reynolds number based on the rotor chord length and the rotor tip speed. The rotational speed of the rotor is determined by an optical tachometer so that the lift force can be balanced with the weight of the UAV. The velocity field measured on the center plane of the rotor shows that the vortices are shedding from the tip of the rotor, inducing large fluctuations in the streamwise velocity along the wake shear layer. The strength of the rotor-tip vortex shedding is asymmetric with respect to the rotor axis due to the interaction between the rotor and the wake centerline of each rotor is inclined to the center of the UAV due to the pressure difference caused by the induced velocity. The wake from each rotor moves closer to each other while traveling in the streamwise direction, and then is merged together inducing large fluctuations in the transverse velocity. Due to the wake merging, on the center plane of the UAV, the velocity increases in the streamwise direction showing two-peak structure in the streamwise velocity contours.

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

Stability of Inclined Premixed Planar Flames (기울어진 예혼합 평면화염의 안정성)

  • Lee, Dae-Keun;Kim, Moon-Uhn;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.97-106
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in gravitational field which generate vorticity is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

A Near Minimum-Time Trajectory Planning for Two Robots Using Dynamic Programming Technique (다이나믹 프로그래밍에 의한 두 대의 로보트를 위한 최소시간 경로계획)

  • 이지홍;오영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.36-45
    • /
    • 1992
  • A numerical trajectory planning method for path-constrained trajectory planning is proposed which ensures collision-free and time-optimal motions for two robotic manipulators with limited actuator torques and velocities. For each robot, physical constraints of the robots such as limited torques or limited rotational velocities of the actuators are converted to the constraints on velocity and acceleration along the path, which is described by a scalar variable denoting the traveled distance from starting point. Collision region is determined on the coordination space according to the kinematic structures and the geometry of the paths of the robots. An Extended Coordination Space is then constructed` an element of the space determines the postures and the velocities of the robots, and all the constraints described before are transformed to some constraints on the behaviour of the coordination-velocity curves in the space. A dynamic programming technique is them provided with on the discretized Extended Coordination Space to derive a collision-free and time-optimal trajectory pair. Numerical example is included.

  • PDF

Gas phase temperature profile measurement of an upflow OMVPE reactor by laser Raman spectroscopy (레이저 라만 분광법을 이용한 도립형 OMVPE 반응기의 기상 온도 분포 측정)

  • ;Timothy J. Anderson
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.448-453
    • /
    • 1998
  • An inverted, stagnation point flow OMVPE reactor was studied by laser Raman spectroscopy. Pure rotational Raman scattering by the carrier gas $(N_2; or; H_2)$ was used to determine the axial centerline temperature profile in the reactor as a function of the inlet flow velocity and the rector aspect ratio. A larger temperature gradient normal to the susceptor surface was obtained with higher gas glow velocity, larger aspect ratio, and the use of a $N_2$ carrier gas.

  • PDF

Distinct Element Modelling of Stacked Stone Pagoda for Seismic Response Analysis (지진응답 해석을 위한 적층식 석탑의 개별요소 모델링)

  • Kim, Byeong Hwa;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2018
  • It is inevitable to use the distinct element method in the analysis of structural dynamics for stacked stone pagoda system. However, the experimental verification of analytical results produced by the discrete element method is not sufficient yet, and the theory of distinct element method is not universal in Korea. This study introduces how to model the stacked stone pagoda system using the distinct element method, and draws some considerations in the seismic analysis procedures. First, the rocking mode and sliding mode are locally mixed in the seismic responses. Second, the vertical stiffness and the horizontal stiffness on the friction surface have the greatest influence on the seismic behavior. Third, the complete seismic analysis of stacked stone pagoda system requires a set of the horizontal, vertical, and rotational velocity time histories of the ground. However, earthquake data monitored in Korea are limited to acceleration and velocity signals in some areas.

The Seek Control Design with Gain-Scheduling in Hard Disk Drives

  • Hwang, Eun-Ju;Hyun, Chang-Ho;Park, Mig-Non
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • The increased disk rotational velocity to improve the data transfer rate has raised up many serious problems in its servo control system which should control the position and velocity of a spot relative to a rotating disk. This paper proposes gain-scheduling-based track-seek control for single stage actuator of hard disk drives. Gain scheduling is a technique that can extend the validity of the linearization approach to a range of operating points and one of the most popular approaches to nonlinear control design. The proposed method schedules controller gains to improve the transient response and minimize overshoot during the functions of the read/write head positioning servomechanism for the seek control. The validity of the proposed method is demonstrated through stability analysis and simulation results.

Constraining the MBH-${\sigma}*$ relation of the NLS1s using a directly measured stellar velocity dispersion

  • Yoon, Yosep;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2013
  • WIth high accretion rate and low black hole mass, narrow line seyfert 1 galaxies (NLS1s) are an interesting sub-class of AGNs. To investigate whether NLS1s follow the same M-${\sigma}*$ relation as other AGNs, we selected a sample of 110 NLS1s at relatively low redshift z < 0.1 from SDSS DR7 by constraining the FWHM of Ha broad component, and determined their black hole masses. We measured stellar velocity dispersion of 65 objects which showed strong enough stellar lines in the SDSS spectra, while we adopted the ${\sigma}*$ measurements of 45 objects from Xiao et al. 2011. We find that NLS1s follow the M-${\sigma}*$ relation of active and inactive galaxies while there is a dependency due to the galaxy inclination, which probably cause rotational broadening of stellar absorption lines.

  • PDF