• Title/Summary/Keyword: rotation degree of freedom

Search Result 63, Processing Time 0.026 seconds

Finite element generalized tooth contact analysis of double circular arc helical gears

  • Qu, Wentao;Peng, Xiongqi;Zhao, Ning;Guo, Hui
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • This paper investigates the load sharing of double circular arc helical gears considering the influence of assembly errors. Based on a load sharing formulae, a three-dimensional finite element tooth contact analysis (TCA) is implemented with commercial software package ANSYS. The finite element grid for the double circular arc gear contact model is automatically generated by using the APDL (ANSYS Parameter Design Language) embedded in ANSYS. The realistic rotation of gears is achieved by using a coupling degree-of-freedom method. Numerical simulations are carried out to exemplify the proposed approach. The distribution of contact stress and bending stress under specific loading conditions are computed and compared with those obtained from Hertz contact theory and empirical formulae to demonstrate the efficiency of the proposed load sharing calculation formulae and TCA approach.

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1697-1704
    • /
    • 2007
  • We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.

Force Display Based on Simultaneous Actuation of Motors and Brakes

  • Kwon, Tae-Bae;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1131-1135
    • /
    • 2004
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. However, the force feedback using active actuators such as motors can make the system active and sometimes unstable. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic device. A brake can generate a torque only against its rotation, but it is intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with both motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. For various haptic effects, contact with the virtual wall and representation of friction effect are extensively investigated in this paper. It is shown that the hybrid haptic system is more suited to some applications than the motor-based active haptic system.

  • PDF

Buckling Analysis of Thin-Walled Curved Members by Finite Element Method (유한요소법에 의한 박판곡선부채의 좌굴해석)

  • Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.1-14
    • /
    • 1991
  • A computer program for the linear elastic buckling anlalysis of thin walled members is developed using a 3-node triangular shell element. The element has real stiffness value for a kinematic degree of freedom associated with rotation about the surface normal at each node. The validity of the present computer program is demonstrated through the plate buckling analysis and the lateral-torsional buckling analysis of a straight beam. Then, simply supported circular arches subjected to uniform bending are analyzed and the results are compared with existing solutions.

  • PDF

Design of control algorism for 2 DOF myoelectric hand prosthesis (2자유도 전동의수의 제어알고리즘 설계)

  • Choi, Gi-Won;Choe, Gyu-Ha;Kim, Hong-Sung;Shin, Woo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.250-252
    • /
    • 2007
  • In this paper presents a control algorism for myoelectric hand prosthesis(MHP) with 2 degree of freedom(DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The experimental results were showed that the proposed a control algorism is feasible for the MHP.

  • PDF

Evaluation on the Usefulness of 6DoF Couch in V-MAT on Patients with Long length of Target (표적의 길이가 긴 환자의 용적회전변조 방사선치료 시 6DoF Couch의 유용성 평가)

  • Choi, Young Se;Park, Hyo Kuk;Kim, Se Young;Kim, Joo Ho;Lee, Sang Kyoo;Yoon, Jong Won;Cho, Jung Heui
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.53-64
    • /
    • 2017
  • Purpose: To evaluate the usefulness of the $HexaPOD^{TM}$ evo RT system(6DoF couch) and the tendency of dose difference according to size of rotational direction error for volumetric rotational modulated radiotherapy(V-MAT) in patients with long target lengths. Therefore, it is suggested to recommend the need for rotational error correction. Materials and Methods: Ten patients with Esophagus cancer or Breast cancer including SCL treated with HexaPOD 6DoF(Six-Degree of Freedom) couch were included in this study. 6DoF couch was used to measure the difference in dose according to the rotation error in the directions of Rx(pitch), Ry(roll), and Rz(yaw). Each rotation error was applied. Positioning variation on x, y and z axis was verified and random variations were made by 6DoF couch with positioning variation. Modified DQA is conducted and point dose and gamma value are analyzed and compared. In addition, after applying the rotation error every $1^{\circ}$ to treatment plans of each target with a diameter of 3 cm, 5, 10, 15, and 20 cm respectively, gamma passing rate is being monitored by its aspect of change according to types and sizes of the target length and rotation error. Results: Mean error of the point dose and Gamma passing rate when the position variation was applied were $2.50{\pm}1.11%$ and $84.1{\pm}7.39%$ in the Rx direction, $2.36{\pm}1.16%$, and $81.0{\pm}8.49%$ in the Ry, $2.35{\pm}1.10%$ and $84.4{\pm}6.99%$ in the Rz direction, respectively. As a result of analysis on gamma passing rate according to types and sizes of the target length and rotation error, the gamma passing rate tended to decrease with increasing rotation error in the Rx and Rz directions except Ry direction. In particular, the lowest gamma passing rate (74.2 %) was in the case of $2.5^{\circ}$ rotation error in Rz direction of the target of 10 cm. Conclusion: The correction of the rotational error is needed for volumetric modulated radiotherapy of the treatment area with a long target length, and the use of 6DoF couch will improve the reproducibility of the patient position and the quality of the treatment.

  • PDF

A Study on Face Recognition Using Diretional Face Shape and SOFM (방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.109-116
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation for the identification of a face shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the face area through pre-processing using a face shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a face area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the face shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

The Numerical Analysis of Spindle Motor Bearing Composed of Herringbone Groove Journal and Spiral Groove Thrust Bearing

  • Oh, Sang-Man;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 2001
  • Ball bearings have been widely used for the spindle motor bearing in various kinds of information storage devices. Recently many researchers have been trying to replace ball bearings with fluid film bearings because of their superior NRRO(non-repeatable runout) characteristics. In this study, a numerical analysis has been conducted for the complicate bearing system composed of herringbone groove journal bearing and spiral groove thrust bearing for the spindle motor of the information storage device. At first, spindle motor bearing is modeled as journal bearing part and thrust bearing part separately, and then observed various influences of geometric parameters. Previous studies had considered only the translational motion of the journal bearing. However, this study takes the additional 2-degree of freedom rotation into consideration to attempt to describe the real motion of the spindle bearing. As a result, rotational stiffness coefficients and rotational damping coefficients are obtained. In addition, a spindle bearing system made up of four bearings is modeled and interpreted at once and coefficients of dynamic characteristics of each bearing are obtained. Finally, an eigen analysis of bearing system is made with these results. Through this analysis, it is possible to estimate an unstable condition of the system for given geometric parameters and to propose a method which is able to avoid the unstable condition by a proper adjustment of geometric parameters.

  • PDF

A Study on Dynamics Analysis and Position Control of 5 D.O.F. Multi-joint Manipulater for Uncontact Remote Working (원격작업을 위한 5자유도 다관절 매니퓰레이터의 동특성 분석 및 위치제어에 관한 연구)

  • Kim, Hee-Jin;Jang, Gi-Wong;Kim, Seong-Il;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.87-99
    • /
    • 2022
  • We propoes a study on the dynamic characteristics analysis and position control of 5-degree multi-joint manipulators for untact remote working at construction sites and manufacturing plants. The main frame of freedom multi-joint manipulator consists of five elements, boom cylinder, boom cylinder, arm cylinder, bucket cylinder, and rotation joint and link. In addition, the main purpose of the proposed system is to realize the work of the manufacturing process or construction site by remote control. Motion control of the entire system is a servo valve control method by hydraulic servo cylinders for one to four joints, and a servo motor control method is applied for five joints. The reliability of the proposed method was verified through performance experiments by computer simulation.