• Title/Summary/Keyword: rotation angle detection

Search Result 64, Processing Time 0.025 seconds

Detection Method of Human Face, Facial Components and Rotation Angle Using Color Value and Partial Template (컬러정보와 부분 템플릿을 이용한 얼굴영역, 요소 및 회전각 검출)

  • Lee, Mi-Ae;Park, Ki-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.465-472
    • /
    • 2003
  • For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.

Tacho Pulse Non-uniformity Effects on Pulse Count Method (타코펄스 불균일성으로 인한 펄스개수측정방법 영향성)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • Pulse count method is the classical reaction wheel speed detection method. In this study, we represent the pulse count method as mathematical equations. Instead of rotation speed, we model the reaction wheel rotation through rotation angle during sampling periods. We verified the effectiveness of the proposed model by comparing the pulse counts variation and averaging method effects from the model and previous research results. Then, we add tacho pulse non-uniformity to this verified model, and examine the errors of pulse count method. We express the measurement error increasement due to non-uniformity as mathematical equations, and also shows the requirement of moving average numbers to offset the measurement errors.

Sensor Module for Detecting Postural Change and Falls

  • Jeon, G.R.;Ahn, S.J.;Shin, B.J.;Kang, S.C.;Kim, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.362-367
    • /
    • 2014
  • In this study, a postural change detection sensor module (PCDSM) was developed to detect postural changes in activities of daily living (ADL) and falls. The PCDSM consists of eight mercury sensors that measure angle variations in $360^{\circ}$ rotation and $90^{\circ}$ tilting. From the preliminary study, the output characteristics of the PCDSM were confirmed with the angle variations of rotational motion and a tilting table. Three experiments were conducted to test rotational motion, postural changes, and falling and lying. The results confirmed that the PCDSM could effectively detect postural changes, movement patterns, and falls or non-falls.

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

Object Detection from High Resolution Satellite Image by Using Genetic Algorithms

  • Hosomura Tsukasa
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.123-125
    • /
    • 2005
  • Many researchers conducted the effort for improving the classification accuracy of satellite image. Most of the study has used optical spectrum information of each pixel for image classification. By applying this method for high resolution satellite image, number of class becomes increase. This situation is remarkable for house, because the roof of house has variety of many colors. Even if the classification is carried out for many classes, roof color information of each house is not necessary. Most of the case, we need the information that object is house or not. In this study, we propose the method for detecting the object by using Genetic Algorithms (GA). Aircraft was selected as object. It is easy for this object to detect in the airport. An aircraft was taken as a template. Object image was taken from QuickBird. Target image includes an aircraft and Haneda Airport. Chromosome has four or five parameters which are composed of number of template, position (x,y), rotation angle, rate of enlarge. Good results were obtained in the experiment.

  • PDF

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

Changes of modal properties of simply-supported plane beams due to damages

  • Xiang, Zhihai;Zhang, Yao
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.153-175
    • /
    • 2009
  • Damage detection methods using structural dynamic responses have received much attention in the past decades. For bridge and offshore structures, these methods are usually based on beam models. To ensure the successful application of these methods, it is necessary to examine the sensitivity of modal properties to structural damages. To this end, an analytic solution is presented of the modal properties of simply-supported Euler-Bernoulli beams that contain a general damage with no additional assumptions. The damage can be a reduction in the bending stiffness or a loss of mass within a beam segment. This solution enables us to thoroughly discuss the sensitivities of different modal properties to various damages. It is observed that the lower natural frequencies and mode shapes do not change so much when a section of the beam is damaged, while the mode of rotation angle and curvature modes show abrupt change near the damaged region. Although similar observations have been reported previously, the analytical solution presented herein for clarifying the mechanism involved is considered a contribution to the literature. It is helpful for developing new damage detection methods for structures of the beam type.

Feature Matching using Variable Circular Template for Multi-resolution Image Registration (다중 해상도 영상 등록을 위한 가변 원형 템플릿을 이용한 특징 정합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1351-1367
    • /
    • 2018
  • Image registration is an essential process for image fusion, change detection and time series analysis using multi-sensor images. For this purpose, we need to detect accurately the difference of scale and rotation between the multi-sensor images with difference spatial resolution. In this paper, we propose a new feature matching method using variable circular template for image registration between multi-resolution images. The proposed method creates a circular template at the center of a feature point in a coarse scale image and also a variable circular template in a fine scale image, respectively. After changing the scale of the variable circular template, we rotate the variable circular template by each predefined angle and compute the mutual information between the two circular templates and then find the scale, the angle of rotation and the center location of the variable circular template, respectively, in fine scale image when the mutual information between the two circular templates is maximum. The proposed method was tested using Kompsat-2, Kompsat-3 and Kompsat-3A images with different spatial resolution. The experimental results showed that the error of scale factor, the error of rotation angle and the localization error of the control point were less than 0.004, $0.3^{\circ}$ and one pixel, respectively.

3D Electromagnetic Analysis of Magnetic Sensor for Improvement of Motor (모터의 성능향상을 위한 마그네틱 센서의 3차원 전자장 해석)

  • Shim, Sang-Oh;Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2381-2387
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic hall sensor using hall effect elements with yoke. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from disturbance in the vicinity of hall effect elements. Thus, The paper studies a way which makes sine and cosine waveforms robust in disturbance and reduces harmonics by installing a yoke around Hall effect elements. The angle detection simulation for the magnetic hall sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. For the Taguchi method, three design parameters related to position of hall effect elements and shape of hall effect element yoke are selected.

Sensorless driving strategy of Single-Phase Hybrid SRM basing on Back-EMF detection (역기전력을 이용한 단상 하이브리드 SRM의 위치 추정 방법)

  • Tang, Ying;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.521-522
    • /
    • 2016
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The proposed method uses the differential of back-EMF within a position region to estimate rotor position. By detecting the crossing-zero signal of back-EMF differential value, the minimum position of back-EMF corresponding to an absolute rotor position can be captured and used for position estimation four times in every mechanical rotation. In this way, a sensorless operation with adjustable turn on/off angle can be achieved without substantial computation. For the starting, two current comparators are adopted. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed sensorless scheme.

  • PDF