• Title/Summary/Keyword: rotating wave

Search Result 175, Processing Time 0.034 seconds

Non-contacting Diagnostic Techniques for Generator Shafts Using Magnetostrictive Effects (마그네토스트릭션 효과를 이용한 발전기축의 비접촉 이상 진단 기법)

  • Kim, Yoon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.109-112
    • /
    • 2001
  • The specific goal of this research is to develop a non-contact measurement technique of stress waves propagating in a rotating shaft. This technique will enable on-line damage detection in shafts in power-generating systems. To minimize measurement errors due to shaft rotation, we have employed magnetostrictive sensors. The sensors are not only cost-effective but also insensitive to liftoff or fill factors. Several experimental results showed the effectiveness of the present technique. The damage location in a rotating shaft was accurately predicted by the wave signal measured by the present approach.

  • PDF

Extension of the Rotating Planar Waveguide Model to Formation of Interference Patterns in Optical Fibers

  • Pena-Garcia, Antonio;Perez-Ocon, Francisco;Jimenez, Jose Ramon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.128-131
    • /
    • 2011
  • After the successful extension of the rotating planar waveguide model to Wave Optics, where a clear identification between the angular velocity of one hypothetical waveguide and the phase differences between two points on the path of one bounded mode was found, an application of the model to explain the interference theory is presented. We demonstrate that, for two bounded modes to create an interference pattern, a constrain to the relative parameters among both is imposed by the fiber optics. This result, not reported in the literature up to date, provides a new horizon to understand the interaction light-light when propagated within optical fibers.

A Study on the Partial Discharge Wave Propagation along Stator Winding (회전기 권선의 펄스 전송특성 연구)

  • Kang, Dong-Sik;Sim, Woo-Yong;Hwang, Don-Ha;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.738-740
    • /
    • 2003
  • A lot of R&D on the diagnosis of stator winding insulation for large rotating machines has been carried out since the 1970s. The on-line partial discharge measurement has proved to be an effective technique in the evaluation of the state of stator insulation in high voltage rotating machines. It is well known that if the discharge pulses propagate through the winding conductor, they are attenuated and delayed. In the present study, to investigate the attenuation and the time delay of discharge pulses through the winding conductor, a series of tests were conducted using a model coils and slot. Thus it could be concluded that while the high frequency pulse propagates in radiation or end-winding coupling modes, the low frequency one does in a series mode through the coil conductor.

  • PDF

A Study on the Rotating Displacement Measurement of Rigid Body by ESPI Method (ESPI법에 의한 강체 회전 변위 측정에 관한 연구)

  • 김경석;홍명석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.125-133
    • /
    • 1993
  • Electronic Speckle Pattern Interferometry(ESPI) using a CW laser, a video system and image processor was applied to the rotating displacement of rigid body. ESPI require no special surface preparation or attachments and displacements between any two arbitrary points on the surface can be measured. The characteristic speckle pattern formed when imaging a scattering surface illuminated by laser light retains phase information, which can be used for interferometric measurement of surface displacement. The application of this principle to measuring in-plane displacement resolved in one direction is described, together with the novel use of television equipment to detect and process the information contained in the speckle pattern. This is faster, and more convenient and versatile than customary photographic methods.

  • PDF

Dynamic Analysis of Floating Wave Energy Generation System with Mooring System (계류시스템을 가진 부유식 파력발전기의 동적거동 해석)

  • Choi, Gyu Seok;Sohn, Jeong Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.257-263
    • /
    • 2013
  • In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three-dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load.

A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows (고속 흐름에서의 충격파와 난류경계층의 상호작용에 관한 수치적 연구)

  • Mun, Su-Yeon;Son, Chang-Hyeon;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.322-329
    • /
    • 2001
  • A study of the shock wave turbulent boundary layer interaction is presented. The focus of the study is the interactions of the shock waves with the turbulent boundary layer on the falt plate. Three examples are investigated. The computations are performed, using mixed explicit-implicit generalized Galerkin finite element method. The linear equations at each time step are solved by a preconditioned GMRES algorithm. Numerical results indicate that the implicit scheme converges to the asymptotic steady state much faster than the explicit counterpart. The computed surface pressures and skin friction coefficients display good agreement with experimental data. The flowfield manifests a complex shock wave system and a pair of counter-rotating vortices.

Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature

  • Abo-Dahab, S.M.;Othman, Mohamed I.A.;Alsebaey, Ohoud N.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, we established the generalized thermoelasticity phenomenon in an isotropic elastic medium considering the electromagnetic field, rotation and two-temperature. Three theories of generalized thermoelasticity have been applied: Lord-Shulman (one relaxation time), Green-Lindsay (two relaxation times), as well as the coupled theory. We discussed some particular cases in the context of the wave propagation phenomenon in thermoelasticity. From solving the fundamental equations, we arrived that there are three waves: P-, T- and SV-waves that we calculated their velocities. The boundary conditions for mechanical stress and Maxwell's stress and thermal insulated or isothermal have been applied to determine the amplitudes ratios (reflection coefficients) for P-, T - and SV waves. Some utilitarian aspects are obtained from the reflection coefficients, presented graphically, and the new conclusions have been presented. Comparisons are made for the results predicted by different theories (CT, LS, GL) in the absence and presence of the electro-magnetic field, rotation, as well as two-temperature on the reflection of generalized thermoelastic waves. The results obtained concluded that the external parameters as the angle of incidence, electromagnetic field, rotation as well as the theories parameters have strong effect on the phenomenon.

Systematic Error Correction in Dual-Rotating Quarter-Wave Plate Ellipsometry using Overestimated Optimization Method (최적화 기법을 이용한 두 개의 회전하는 사분파장판으로 구성된 타원편광분석기에서의 체계적인 오차 보정)

  • Kim, Dukhyeon;Cheong, Hai Du;Kim, Bongjin
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • We have studied and demonstrated general, systematic error-correction methods for a dual rotating quarter-wave plate ellipsometer. To estimate and correct 5 systematic error sources (three offset angles and two unexpected retarder phase delays), we used 11 of the 25 Fourier components of the ellipsometry signal obtained in the absence of an optical sample. Using these 11 Fourier components, we can determine the errors from the 5 sources with nonlinear optimization methods. We found systematic errors ${\epsilon}_3$, ${\epsilon}_4$, ${\epsilon}_5$) are more sensitive to the inverted Mueller matrix than retarder phase delay errors (${\epsilon}_1$, ${\epsilon}_2$) because of their small condition numbers. To correct these systematic errors we have found that error of any variety must be less than 0.05 rad. Finally, we can use the magnitudes of these errors to correct the Mueller matrix of optical components. From our experimental ellipsometry signals, we can measure phase delay and the rotational angular position of its fast axis for a half-wave plate.

In Vitro Study on the Artificial Plaque Removal Effect by Use of 360 Degree Rotating Head with Sonic Tooth-Brush

  • Lim, Jee-Hyun;Kim, Jin-Sil;Choi, Hwa-Young
    • International Journal of Clinical Preventive Dentistry
    • /
    • v.14 no.4
    • /
    • pp.228-234
    • /
    • 2018
  • Objective: The authors have experimented for the artificial plaque removal effect of several kinds of 360 degree rotating head typed tooth-brushes with sonic vibratory actioned by using of automatic machine for horizontal scrub method in order to find the better toothbrush type for plaque removal. Methods: The experiment was conducted on three medium to 360 degree rotating head toothbrushes, a medium sized toothbrush and a medium sized toothbrush, and a flat toothbrush consisting of 30 ordinary toothbrushes. A brushing machine with horizontal scrubbing was manufactured and had variations of the end of the bristle attached to or near the surface of the teeth, a vibrating wave action force of 16,000 or 18,000 cycles per minute, and a working time of 2 or 3 minutes. The tooth removal effect was confirmed by scanning and analyzing images with a computer program after automatic brushing with the machine. The elimination rate results for each group were analyzed using the independent t-test and one-way ANOVA test. Results: It revealed the most in removal effect for the artificial plaque in such conditions as action at near the tooth surface with 18,000 cycle for 3 minutes in case of using A, B, and C tooth-brush. And it has more removal effect rate than for using the plane tooth-brush (p<0.05). Conclusion: It was recommended to develop the 360 degree rotating head and vibratory toothbrush focusing to use near the tooth surface with 18,000 cycles of vibration for 3 minutes at one site of the teeth area.

Proposal of Rotating Stability Assessment Formula for an Interlocking Caisson Breakwater Subjected to Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 회전 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye;Lee, Byeong Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • The rotational stability of an interlocking caisson breakwater was studied. Using the analytical solution for the linear wave incident to the infinite breakwater, the phase difference effect of wave pressures in the direction of the breakwater baseline is considered, and Goda's wave pressure formula in the design code is adopted to consider the nonlinearity of the design wave. The rotational safety factor of the breakwater was defined as the ratio of the rotational frictional resistance moment due to caisson's own weight and the acting rotational moment due to the horizontal and vertical wave forces. An analytical solution for the rotational center point location and the minimum safety factor is presented. Stability assessment formula were proposed to be applicable to all design wave conditions used in current port and harbor structure design such as regular waves, irregular waves and multi-directional irregular waves.