• Title/Summary/Keyword: rotary tiller

Search Result 26, Processing Time 0.019 seconds

Conditions for No Soil -Push By Outside of Front Cutting Surface on Bent Blade

  • Chen, Cuiying;Mao, Hanping
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1088-1094
    • /
    • 1993
  • One of the important restraint conditions for determination of rotary tiller parameters is whether the outside of front cutting surface on blade in rotary tiller pushes untilled soil in operation. By theoretical analysis and graphic verification on computer, no sil-push conditions is put forward and formula for calculating the position angle of its bent line derived, as is convenient for selection of rotary tiller parameters and design and drawing of its blade.

  • PDF

Study on the Development of High-speed Rotary Tilling System for Power Tiller (경운기의 고속 로터리 경운시스템 개발에 관한 연구)

  • 이승규;김성태;우종구;김재영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2001
  • The purpose of this study is to develop high-speed rotary tillage system for a power tiller by improving the rotary blade and the power train of transmission. Mechanical structure of gear train of rotary drive of conventional power tiller was simplified so that power can be transmitted directly from second shaft to tilling speed change shaft by rotating freely the transfer gear which changes the direction of rotation of shafts using needle bearing installed into middle shaft. A new gear train suitable for the single-edged rotary blade and high-speed rotary drive was developed with the rotational speed of rotary shaft faster than 7.5% at 1st-speed and 1.4% at 2nd-speed the one of conventional system by changing the numbers of teeth of gears of middle shaft, tilling speed change shaft and PTO shaft. Using the developed gear train for high-speed rotary drive, field tests were performed to compare tillage performances by the developed single-edged blade and by the conventional double-edged blade. The results showed that the performances by the single-edged blade compared with the one by the double-edged blade was improved about 18% in field capacity, about 34% in fuel consumption, and 9.4% in soil crushing ratio. Therefore, it may be concluded that tillage performance by the single-edged blade was improved compared to the one by the conventional blade. Evaluation of the developed system consisting of single-edged blade and gear train for high-speed rotary drive in field revealed that tillage performance of the developed system was similar to the one of field test conducted using the system consisting of single-edged blade and gear train for rotary drive of conventional power tiller However, considering the higher cone index of the upland field where evaluation was carried out compare to the one of the ordinary paddy field, it may be concluded that tillage performance of the developed rotary tilling system better than the one of conventional system.

  • PDF

FATIGUE TEST TO THE BLADES AXLE OF ROTARY TILLER

  • Mao, Hanping;Chen, Cuiying
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.291-296
    • /
    • 1993
  • Taking a bledes axle of rotary tiller as a example, this paper discusses influences of four loading essential factors, which are strengthened amplitude, cycle times, loading sequence and loading frequency. in fatigue life. Determination principles of above four factors and monitoring methods of fatigue damage by local strain are dealt with. The actual field testing check of farm machinery is rapidly simulated by laboratory program fatigue test can shorten the period of development and improvement of a product. In the time of in-door simulation test, damage monitoring and four loading essential factors, which are strengthened amplitude , cycle times, loading sequence and loading frequency, have to be dealt with . If these problems are solved successfully, it is possible to accelerated test speed, reduce costs and manhours, and raise accuracy of test result. However strengthening method, loading pattern and influence of loading frequency on test result have not so far been discu sed systematically, damage monitoring is even more a difficult problem. Authors have studied above problems with the object of blades axle of rotary tiller.

  • PDF

Study on System Compatibility Deformation Model of Rotary Tiller Under Lateral Loads

  • Hu, Hangxiang;Wang, Changbing;Sang, Zhengzhong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.277-283
    • /
    • 1993
  • The model of rotary tillers under side loads established here is statically in determinate system. By means of FEM method, the deformation of side gearbox and right side board are calculated. Therefore the side deformations of rotary tillers under different lateral loads are discussed systematically. The results show that the rotary tiller system would bear the loads and deform unequally. Author's calculation also indicates that the lateral deforming values of right side board and side gearbox are almost the same, and more than 98% of the loads is born by the side.

  • PDF

Study on the Improvement of Rotary Blade - Tilling Load Characteristic Analysis of the Three Kinds of Rotary Blade - (로타리 경운날의 개량 연구 -경운날 3종의 경운부하특성 분석 -)

  • 김수성;이여성;우종구
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.391-400
    • /
    • 1997
  • Using the soil bin systems, this study was carried out to investigate the tilling load characteristic for the three kinds of Japanese rotary blade and the possibility of common use for power tiller and tractor rotary. The results obtained from the study are summarized as follows : 1. At all tested soils. the average and maximum tilling torque of all tested blades increased as the tillage pitch did. 2. The torque requirements of newly designed and produced blade was less than that of blade which has been used on power tiller and tractor rotary. 3. The maximum tilling torque of new ONE were decreased 7%, 10~11%, 27% in comparing with another blades at clay loam, loam and sandy loam, respectively. 4. According to observation of the extent of soil adhesion on blade and the contact aspect of blade, new ONE is the most excellent of all tested rotary blades and till smoothly not to compress the untilled soil. From the results of this study. the newly developed blade(new ONE) proved to be good tilling load performance and had a conclusion that it is possible to use it on power tiller and tractor rotary in common.

  • PDF

Estimation on the Coefficient of Repair & Maintenance Costs for Power Tiller (경운기의 수리비계수(修理費係數) 산정(算定)에 관한 연구(硏究))

  • Kang, C.H.;Park, N.J.;Jung, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 1990
  • This study was conducted to estimate the ratio of Repair & Maintenance (R&M) costs to purchasing price that is one of the important factors for calculating the management costs of farm machinery. For this purpose, hour of use and R & M costs of power tiller and its attachments utilized results that were investigated with 400 sample units, 50 units by years of use from 1 to 8 years in 1988. The results obtained are summarized as follows; 1. The ratio of R & M costs per hours and annual R & M costs, accumulated R & M costs when sercice life of power tiller is 7 years were 0.017%, 5.50% and 38.52%, respectively. And in case of rotary, these ratio when its service life is 6 years were 0.072%, 7.16% and 43.0%, respectively. 2. The relationship between accumulated hours of use(t) and accumulated R & M costs(Y) of power tiller and its attachments were $Y=19.3t^{1.3}$ in power tiller, $Y=0.03t^{2.09}$ in plow, $Y=48.84t^{1.25}$ in rotary and $Y=7.45t^{1.15}$ in trailer. 3. The ratio of accumulated R & M costs to purchasing price when service life of power tiller is 7 years was 38.5%, and in case of rotary, this ratio when its service life is 6 years was 43.0%.

  • PDF

CHARACTERISTICS OF MINIMUM TILLAGE BY ROTARY TILLER FOR DIRECT RICE SEEDER

  • Park, S. H.;Lee, K. S.;Lee, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.154-161
    • /
    • 2000
  • A series of soil bin experiment was carried to investigate the effects of rotary blade shape, rotational direction of rotary blade, number of blade and soil cutting disk blade on the characteristics of partial tillage. Among the three types of rotary blades, rotary blade for cultivator was considered to be proper for partial tillage of direct seeder considering the torque requirements and ratio of soil breaking. There is no need to attach so many blades to the rotary shaft. Four rotary blades were enough for efficient partial tillage by rotary tiller. Though soil cutting disk blade assisted the better formation of seedbed furrow, attachment of the soil cutting disk blade increased torque requirements.

  • PDF

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

Field Performance of a Miniature Power Tiller (소형(小型) 동력경운기(動力耕耘機)의 포장작업성능(圃場作業性能)에 관한 연구(硏究))

  • Kim, Hong-Yun;Choi, Kyu-Hong
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.15-27
    • /
    • 1981
  • In order to investigate on the field performance of 3.5PS power tiller and to obtain the optimum using conditions of it, this experiment has been carried on the plowing operation, the rotary harrowing operation and the ridging operation that compared 3.5PS power tiller(KC-450) with the existing 5PS(DT-40) and 8PS(DT-85) power tiller. It has been performed at Suck Jung-Dong, Ansung Country, from March to October in 1980. The results of this field test were obtained as follows; 1. The plowing performance of KC-450 tiller was found to be 125min/10a that was lower than that of DT-85 tiller by 26min/10a in the effective plowing speed 0.9m/sec. 2. The field efficiency of KC-450 tiller was the highest among the power tillers as to be 82 persent that was higher than that of DT-85 tiller by 5 persent in the effective plowing speed 1m/sec. 3. The rotary harrowing performances of DT-40 tiller and DT-85 tiller were higher than that of KC-450 tiller in the rotary harrowing operation of the same speed, and the field efficiency of KC-450 tiller and DT-40 tiller were higher than that of DT-85 tiller in the rotary harrowing operation. 4. The ridging Performance of testing power tillers were nearly equality in the ridging operation of the same speed, and the field efficiency of testing tillers were higher KC-450 tiller than DT-40 tiller, DT-40 tiller than DT-85 tiller. 5. The work performance of power tiller increased with increase in the size of field area. Work performance and field efficiency of KC-450 tiller were higher than other tillers below 8a in field size 6. DT -85 tiller was more useful in deep plowing depth. But below 8a in field size KC-450 tiller was more easily operated and its field efficiency was higher 7. KC-450 tiller should be more useful to operate in the small size field or in the small scale farming and for the cultivation of vegetables, gardening plants, medicinal herb and tobacco plants, or for the cultivation in vinyl house.

  • PDF

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF