• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.038 seconds

Multi-Image RPCs Sensor Modeling of High-Resolution Satellite Images Without GCPs (고해상도 위성영상 무기준점 기반 다중영상 센서 모델링)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.533-540
    • /
    • 2021
  • High-resolution satellite images have high potential to acquire geospatial information over inaccessible areas such as Antarctica. Reference data are often required to increase the positional accuracy of the satellite data but the data are not available in many inland areas in Antarctica. Therefore this paper presents a multi-image RPCs (Rational Polynomial Coefficients) sensor modeling without any ground controls or reference data. Conjugate points between multi-images are extracted and used for the multi-image sensor modeling. The experiment was carried out for Kompsat-3A and showed that the significant accuracy increase was not observed but the approach has potential to suppress the maximum errors, especially the vertical errors.

Assessment of the Prediction Performance of Ensemble Size-Related in GloSea5 Hindcast Data (기상청 기후예측시스템(GloSea5)의 과거기후장 앙상블 확대에 따른 예측성능 평가)

  • Park, Yeon-Hee;Hyun, Yu-Kyung;Heo, Sol-Ip;Ji, Hee-Sook
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.511-523
    • /
    • 2021
  • This study explores the optimal ensemble size to improve the prediction performance of the Korea Meteorological Administration's operational climate prediction system, global seasonal forecast system version 5 (GloSea5). The GloSea5 produces an ensemble of hindcast data using the stochastic kinetic energy backscattering version2 (SKEB2) and timelagged ensemble. An experiment to increase the hindcast ensemble from 3 to 14 members for four initial dates was performed and the improvement and effect of the prediction performance considering Root Mean Square Error (RMSE), Anomaly Correlation Coefficient (ACC), ensemble spread, and Ratio of Predictable Components (RPC) were evaluated. As the ensemble size increased, the RMSE and ACC prediction performance improved and more significantly in the high variability area. In spread and RPC analysis, the prediction accuracy of the system improved as the ensemble size increased. The closer the initial date, the better the predictive performance. Results show that increasing the ensemble to an appropriate number considering the combination of initial times is efficient.

A Study on the Prediction of the Surface Drifter Trajectories in the Korean Strait (대한해협에서 표층 뜰개 이동 예측 연구)

  • Ha, Seung Yun;Yoon, Han-Sam;Kim, Young-Taeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • In order to improve the accuracy of particle tracking prediction techniques near the Korean Strait, this study compared and analyzed a particle tracking model based on a seawater flow numerical model and a machine learning based on a particle tracking model using field observation data. The data used in the study were the surface drifter buoy movement trajectory data observed in the Korea Strait, prediction data by machine learning (linear regression, decision tree) using the tide and wind data from three observation stations (Gageo Island, Geoje Island, Gyoboncho), and prediciton data by numerical models (ROMS, MOHID). The above three data were compared through three error evaluation methods (Correlation Coefficient (CC), Root Mean Square Errors (RMSE), and Normalized Cumulative Lagrangian Separation (NCLS)). As a final result, the decision tree model had the best prediction accuracy in CC and RMSE, and the MOHID model had the best prediction results in NCLS.

Effect of post-rinsing time and method on accuracy of denture base manufactured with stereolithography

  • Katheng, Awutsadaporn;Kanazawa, Manabu;Komagamine, Yuriko;Iwaki, Maiko;Namano, Sahaprom;Minakuchi, Shunsuke
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • PURPOSE. This in vitro study investigates the effect of different post-rinsing times and methods on the trueness and precision of denture base resin manufactured through stereolithography. MATERIALS AND METHODS. Ninety clear photopolymer resin specimens were fabricated and divided into nine groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5, 10, and 15 min using three methods-automated, ultrasonic cleaning, and hand washing. The specimens were polymerized for 30 min at 40℃. For trueness, the scanned intaglio surface of each SLA denture base was superimposed on the original standard tessellation language (STL) file using best-fit alignment (n = 10). For precision, the scanned intaglio surface of the STL file in each specimen group was superimposed across each specimen (n = 45). The root mean square error (RMSE) was measured, and the data were analyzed statistically through one-way ANOVA and Tukey test (α < .05). RESULTS. The 10-min automated group exhibited the lowest RMSE. For trueness, this was significantly different from specimens in the 5-min hand-washed group (P < .05). For precision, this was significantly different from those of other groups (P < .05), except for the 15-min automated and 15-min ultrasonic groups. The color map results indicated that the 10-min automated method exhibited the most uniform distribution of the intaglio surface adaptation. CONCLUSION. The optimal postprocessing rinsing times and methods for achieving clear photopolymer resin were found to be the automated method with rinsing times of 10 and 15 min, and the ultrasonic method with a rinsing time of 15 min.

Prediction of Inhalation Exposure to Benzene by Activity Stage Using a Caltox Model at the Daesan Petrochemical Complex in South Korea (CalTOX 모델을 이용한 대산 석유화학단지의 활동단계에 따른 벤젠 흡입 노출평가)

  • Lee, Jinheon;Lee, Minwoo;Park, Changyong;Park, Sanghyun;Song, Youngho;Kim, Ok;Shin, Jihun
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.151-158
    • /
    • 2022
  • Background: Chemical emissions in the environment have rapidly increased with the accelerated industrialization taking place in recent decades. Residents of industrial complexes are concerned about the health risks posed by chemical exposure. Objectives: This study was performed to suggest modeling methods that take into account multimedia and multi-pathways in human exposure and risk assessment. Methods: The concentration of benzene emitted at industrial complexes in Daesan, South Korea and the exposure of local residents was estimated using the Caltox model. The amount of human exposure based on inhalation rate was stochastically predicted for various activity stages such as resting, normal walking, and fast walking. Results: The coefficient of determination (R2) for the CalTOX model efficiency was 0.9676 and the root-mean-square error (RMSE) was 0.0035, indicating good agreement between predictions and measurements. However, the efficiency index (EI) appeared to be a negative value at -1094.4997. This can be explained as the atmospheric concentration being calculated only from the emissions from industrial facilities in the study area. In the human exposure assessment, the higher the inhalation rate percentile value, the higher the inhalation rate and lifetime average daily dose (LADD) at each activity step. Conclusions: Prediction using the Caltox model might be appropriate for comparing with actual measurements. The LADD of females was higher ratio with an increase in inhalation rate than those of males. This finding would imply that females may be more susceptible to benzene as their inhalation rate increases.

Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model (CNN-LSTM 합성모델에 의한 하수관거 균열 예측모델)

  • Jang, Seung-Ju;Jang, Seung-Yup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • In this paper, we propose a GoogleNet transfer learning and CNN-LSTM combination method to improve the time-series prediction performance for crack detection using crack data captured inside the sewer pipes. LSTM can solve the long-term dependency problem of CNN, so spatial and temporal characteristics can be considered at the same time. The predictive performance of the proposed method is excellent in all test variables as a result of comparing the RMSE(Root Mean Square Error) for time series sections using the crack data inside the sewer pipe. In addition, as a result of examining the prediction performance at the time of data generation, the proposed method was verified that it is effective in predicting crack detection by comparing with the existing CNN-only model. If the proposed method and experimental results obtained through this study are utilized, it can be applied in various fields such as the environment and humanities where time series data occurs frequently as well as crack data of concrete structures.

Tunnel wall convergence prediction using optimized LSTM deep neural network

  • Arsalan, Mahmoodzadeh;Mohammadreza, Taghizadeh;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Hanan, Samadi;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.545-556
    • /
    • 2022
  • Evaluation and optimization of tunnel wall convergence (TWC) plays a vital role in preventing potential problems during tunnel construction and utilization stage. When convergence occurs at a high rate, it can lead to significant problems such as reducing the advance rate and safety, which in turn increases operating costs. In order to design an effective solution, it is important to accurately predict the degree of TWC; this can reduce the level of concern and have a positive effect on the design. With the development of soft computing methods, the use of deep learning algorithms and neural networks in tunnel construction has expanded in recent years. The current study aims to employ the long-short-term memory (LSTM) deep neural network predictor model to predict the TWC, based on 550 data points of observed parameters developed by collecting required data from different tunnelling projects. Among the data collected during the pre-construction and construction phases of the project, 80% is randomly used to train the model and the rest is used to test the model. Several loss functions including root mean square error (RMSE) and coefficient of determination (R2) were used to assess the performance and precision of the applied method. The results of the proposed models indicate an acceptable and reliable accuracy. In fact, the results show that the predicted values are in good agreement with the observed actual data. The proposed model can be considered for use in similar ground and tunneling conditions. It is important to note that this work has the potential to reduce the tunneling uncertainties significantly and make deep learning a valuable tool for planning tunnels.

A study on evapotranspiration using Terra MODIS images and soil water deficit index (Terra MODIS 위성영상과 토양수분 부족지수를 이용한 증발산량 산정 연구)

  • Jinuk Kim;Yonggwan Lee;Jeehun Chung;Jiwan Lee;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.119-119
    • /
    • 2023
  • 본 연구에서는 Terra MODIS(MODerate resolution Imaging Spectroradiometer) 위성영상과 토양수분 부족지수(Soil Water Deficit Index, SWDI)를 이용하여 2012년부터 2022년까지 한반도 전국의 1km 공간 증발산량을 산정하였다. 공간 증발산량을 산정하기 위한 과정은 크게 두 가지로 구분된다. 첫 번째로 MODIS의 LST(Land Surface Temperature), NDVI(Normalized Difference Vegetation Index), 선행강우 및 무강우 누적일수를 이용해 1 km 공간 토양수분을 산정하였다. 농촌진흥청 토양수분관측망 자료 중 토지피복, 토양 속성을 고려하여 선정된 70개소 토양수분 실측데이터와 비교한 결과 지점별 평균 R2 0.63~0.90으로 유의미한 상관성을 나타내었다. 산정된 공간 토양수분은 생장저해수분점과 초기위조점의 관계를 이용한 SWDI로 변환하였다. 두 번째로 순 복사량, 기온 및 NDVI의 적은 수문인자를 통해 증발산량 산정이 가능한 MS-PT(Modified Satellite-based Priestley-Taylor) 모형을 기반으로 계절별 식생과 토양수분 상태를 고려하여 1 km 공간 증발산량을 산정하였다. MS-PT 모형에서 가정한 대기 증발 변수 Diurnal temperature (DT)와 지표 수분의 상관성 문제를 해결하기 위해 DT를 SWDI로 적용하였다. 모형 결과의 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측자료와의 결정계수(Coefficient of determination, R2), RMSE(Root Mean Square Error) 및 IOA(Index of Agreement)를 산정하였다. 본 연구의 결과로 생산되는 국내 증발산량의 시, 공간적 변동성은 증발산량을 통한 수문학적 가뭄지수 및 급성 가뭄을 파악하는데 활용될 수 있을 것으로 판단된다.

  • PDF

Development of a method of the data generation with maintaining quantile of the sample data

  • Joohyung Lee;Young-Oh Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.244-244
    • /
    • 2023
  • Both the frequency and the magnitude of hydrometeorological extreme events such as severe floods and droughts are increasing. In order to prevent a damage from the climatic disaster, hydrological models are often simulated under various meteorological conditions. While performing the simulations, a synthetic data generated through time series models which maintains the key statistical characteristics of the sample data are widely applied. However, the synthetic data can easily maintains both the average and the variance of the sample data, but the quantile is not maintained well. In this study, we proposes a data generation method which maintains the quantile of the sample data well. The equations of the former maintenance of variance extension (MOVE) are expanded to maintain quantile rather than the average or the variance of the sample data. The equations are derived and the coefficients are determined based on the characteristics of the sample data that we aim to preserve. Monte Carlo simulation is utilized to assess the performance of the proposed data generation method. A time series data (data length of 500) is regarded as the sample data and selected randomly from the sample data to create the data set (data length of 30) for simulation. Data length of the selected data set is expanded from 30 to 500 by using the proposed method. Then, the average, the variance, and the quantile difference between the sample data, and the expanded data are evaluated with relative root mean square error for each simulation. As a result of the simulation, each equation which is designed to maintain the characteristic of data performs well. Moreover, expanded data can preserve the quantile of sample data more precisely than that those expanded through the conventional time series model.

  • PDF

The development of non-contact soil moisture sensors using Rayleigh waves and a fully convolutional network (레일리파와 딥러닝를 활용한 비접촉식 토양수분센서 개발)

  • Seoungmin Lee;Dong Kook Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.223-223
    • /
    • 2023
  • 토양수분은 지표면과 지하 영역 사이에 존재하는 수분 및 열에너지의 분배를 제어하거나, 토양 영양분, 식물 성장 및 미생물 활동과 같은 다양한 환경 과정에 영향을 미치는 핵심 구성요소이다. 토양수분은 생태수문학 및 생지화학적 역학, 저수지 관리, 가뭄 및 홍수의 경고, 토양 수분 변화에 따른 작물 수확량 등을 이해하는 데 매우 중요한 역할을 한다. 따라서, 토양 수분의 정확한 측정은 필수적이며, 이러한 필요성에 따라 중력 측정법, 장력 측정법, 전기 저항법 및 시간-주파수 영역반사측정법 등의 다양한 측정 방법들이 다년간 개발되어 사용되었다. 다만, 앞선 방법들은 철저한 실험을 통해 높은 정확성을 확보하였지만, 토양 교란이 발생하는 단점이 존재하며 실험 현장 토양의 물리적, 생물학적, 그리고 화학적 특성의 보존은 매우 어려운 한계점을 가지고 있다. 따라서, 이러한 단점을 극복하기 위해, 본 연구에서는 레일리파를 이용한 비접촉식 비교란 토양수분 센서 개발을 목표로 한다. 모래, 실트, 점토와 같은 세 가지 특징적인 토양 유형에 따른 파동을 측정하고, 측정된 파동으로부터 토양 수분을 추정하기 위해 기존에 개발된 시간-주파수 방법을 활용하여 토양수분을 함께 측정하였다. 비접촉 파동신호를 토양수분으로 변환하기 위하여, fully convolutional network을 개발하였다. 개발한 모델의 결과 검증은 RMSE(Root Mean Square Error)를 활용하여 검증하였으며, 모래, 실트, 점토에서 각각 0.0131, 0.0021, 0.0034 m3 m-3으로 상대적으로 높은 정확성을 보였다. 즉, 본 연구에서 제시한 누출 레일리파를 사용한 비교란-비접촉 토양수분 측정 방법으로, 토양을 교란하지 않고 토양수분을 측정 할 수 있는 높은 가능성을 제시하였다.

  • PDF