• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.036 seconds

A Study on the Measurement of Dill and Mack Model Parameters of a Photoresist (포토레지스트의 Dill 및 Mack 모델 파라미터 측정에 관한 연구)

  • Park, Seungtae;Kwon, Haehyuck;Park, Jong-Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.324-330
    • /
    • 2022
  • We measured the Dill and Mack model parameters that determine the exposure and development characteristics of photoresists, respectively. First, photoresist samples were prepared while altering the exposure dose, and changes in transmittance were measured. Analyzing these results, the Dill model parameters A, B, and C were determined. In particular, the exact solution of the Dill model equation was used to determine the C parameter. In addition, changes in thickness were measured as a function of development time for different exposure doses, and the Mack model parameters Rmin, Rmax, a, and n were determined using the results. We also determined parameter values for the reduced Mack model that uses only three parameters, Rmin, Rmax, and n. The root mean square error between the model predictions and the measured values for the photoresist thickness was found to increase slightly compared to the case using the original Mack model with four parameters.

Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river (딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

Performance Analysis on Depth and Straight Motion Control based on Control Surface Combinations for Supercavitating Underwater Vehicle (초공동 수중운동체의 조종면 조합에 따른 심도 및 직진 제어성능 분석)

  • Yu, Beomyeol;Mo, Hyemin;Kim, Seungkeun;Hwang, Jong-Hyon;Park, Jeong-Hoon;Jeon, Yun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.435-448
    • /
    • 2021
  • This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.

Estimating the Forest Micro-topography by Unmanned Aerial Vehicles (UAV) Photogrammetry (무인항공기 사진측량 방법에 의한 산림 미세지형 평가)

  • Cho, Min-Jae;Choi, Yun-Sung;Oh, Jae-Heun;Lee, Eun-Jai
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.343-350
    • /
    • 2021
  • Unmanned aerial vehicles(UAV) photogrammetry provides a cost-effective option for collecting high-resolution 3D point clouds compared with UAV LiDAR and aerial photogrammetry. The main objectives of this study were to (1) validate the accuracy of 3D site model generated, and (2) determine the differences between Digital Elevation Model(DEM) and Digital Surface Model(DSM). In this study, DEM and DSM were shown to have varying degree of accuracy from observed data. The results indicated that the model predictions were considered tend to over- and under-estimated. The range of RMSE of DSM predicted was from 8.2 and 21.3 when compared with the observation. In addition, RMSE values were ranged from 10.2 and 25.8 to compare between DEM predicted and field data. The predict values resulting from the DSM were in agreement with the observed data compared to DEM calculation. In other words, it was determined that the DSM was a better suitable model than DEM. There is potential for enabling automated topography evaluation of the prior-harvest areas by using UAV technology.

Development and validation of BROOK90-K for estimating irrigation return flows (관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증)

  • Park, Jongchul;Kim, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.

Validity and Reliability of the Korean Version of Person-Centered Practice Inventory-Staff for Nurses (간호사 대상 한국어판 인간중심돌봄 측정도구의 타당도와 신뢰도)

  • Kim, Sohyun;Tak, Sunghee H
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.3
    • /
    • pp.363-379
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the validity and reliability of the Korean version of Person-Centered Practice Inventory-Staff (PCPI-S) for nurses. Methods: The English PCPI-S was translated into Korean with forward and backward translation. Data were collected from 338 nurses at one general hospital in Korea. Construct validity was evaluated with confirmatory factor analysis, convergent validity, and discriminant validity. Known-group validity was also evaluated. Cronbach's α was used to assess the reliability. Results: The PCPI-S Korean version consisted of 51 items in three areas: prerequisites, the care environment, and person-centered process. The comparative fit index (CFI) and values of person-centered care process were improved after engagement and having sympathetic presence items were combined as one component. The construct validity of PCPI-S Korean version was verified using four-factor structures (.05 < RMSEA < .10, AGFI > .70, CFI > .70, and AIC). The convergent validity and discriminant validity of the entire PCPI-S question were verified using a two-factor structures (AVE > .50, construct reliability > .70). There was an acceptable known-group validity with a significant correlation between the PCPI-S level and the degree of person-centered care awareness and education. Internal consistency was reliable with Cronbach's α .95. Conclusion: The Korean version of PCPI-S is valid and reliable. It can be used as a standardized Korean version of person-centered care measurement tool. Abbreviation: RMSEA = root mean square error of approximation; AGFI = adjusted goodness of fit index; AIC = Akaike information criterion; AVE = average variance extracted.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.

Distance Estimation Using Convolutional Neural Network in UWB Systems (UWB 시스템에서 합성곱 신경망을 이용한 거리 추정)

  • Nam, Gyeong-Mo;Jung, Tae-Yun;Jung, Sunghun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1290-1297
    • /
    • 2019
  • The paper proposes a distance estimation technique for ultra-wideband (UWB) systems using convolutional neural network (CNN). To estimate the distance from the transmitter and the receiver in the proposed method, 1 dimensional vector consisted of the magnitudes of the received samples is reshaped into a 2 dimensional matrix, and by using this matrix, the distance is estimated through the CNN regressor. The received signal for CNN training is generated by the UWB channel model in the IEEE 802.15.4a, and the CNN model is trained. Next, the received signal for CNN test is generated by filed experiments in indoor environments, and the distance estimation performance is verified. The proposed technique is also compared with the existing threshold based method. According to the results, the proposed CNN based technique is superior to the conventional method and specifically, the proposed method shows 0.6 m root mean square error (RMSE) at distance 10 m while the conventional technique shows much worse 1.6 m RMSE.

Noise Level Evaluation According to Slice Thickness Change in Magnetic Resonance T2 Weighted Image of Multiple Sclerosis Disease (다발성 경화증 질환의 자기공명 T2 강조영상에서 단면 두께 변화에 따른 잡음 평가)

  • Hong, Inki;Park, Minji;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.327-333
    • /
    • 2021
  • Magnetic resonance imaging(MRI) uses strong magnetic field to image the cross-section of human body and has excellent image quality with no risk of radiation exposure. Because of above-mentioned advantages, MRI has been widely used in clinical fields. However, the noise generated in MRI degrades the quality of medical images and has a negative effect on quick and accurate diagnosis. In particular, examining a object with a detailed structure such as brain, image quality degradation becomes a problem for diagnosis. Therefore, in this study, we acquired T2 weighted 3D data of multiple sclerosis disease using BrainWeb simulation program, and used quantitative evaluation factors to find appropriate slice thickness among 1, 3, 5, and 7 mm. Coefficient of variation and contrast to noise ratio were calculated to evaluate the noise level, and root mean square error and peak signal to noise ratio were used to evaluate the similarity with the reference image. As a result, the noise level decreased as the slice thickness increased, while the similarity decreased after 5 mm. In conclusion, as the slice thickness increases, the noise is reduced and the image quality is improved. However, since the edge signal is lost due to overlapped signal, it is considered that selecting appropriate slice thickness is necessary.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.