• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.032 seconds

Rice yield prediction in South Korea by using random forest (Random Forest를 이용한 남한지역 쌀 수량 예측 연구)

  • Kim, Junhwan;Lee, Juseok;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.75-84
    • /
    • 2019
  • In this study, the random forest approach was used to predict the national mean rice yield of South Korea by using mean climatic factors at a national scale. A random forest model that used monthly climate variable and year as an important predictor in predicting crop yield. Annual yield change would be affected by technical improvement for crop management as well as climate. Year as prediction factor represent technical improvement. Thus, it is likely that the variables of importance identified for the random forest model could result in a large error in prediction of rice yield in practice. It was also found that elimination of the trend of yield data resulted in reasonable accuracy in prediction of yield using the random forest model. For example, yield prediction using the training set (data obtained from 1991 to 2005) had a relatively high degree of agreement statistics. Although the degree of agreement statistics for yield prediction for the test set (2006-2015) was not as good as those for the training set, the value of relative root mean square error (RRMSE) was less than 5%. In the variable importance plot, significant difference was noted in the importance of climate factors between the training and test sets. This difference could be attributed to the shifting of the transplanting date, which might have affected the growing season. This suggested that acceptable yield prediction could be achieved using random forest, when the data set included consistent planting or transplanting dates in the predicted area.

Performance Improvement of Near Earth Space Survey (NESS) Wide-Field Telescope (NESS-2) Optics

  • Yu, Sung-Yeol;Yi, Hyun-Su;Lee, Jae-Hyeob;Yim, Hong-Suh;Choi, Young-Jun;Yang, Ho-Soon;Lee, Yun-Woo;Moon, Hong-Kyu;Byun, Yong-Ik;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS) located at Siding Spring Observatory (SSO) in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS) $\lambda$/10 in order to obtain a stellar full width at half maximum (FWHM) below $28\;{\mu}m$. However, we started to figure the mirror for the target value of RMS $\lambda$/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS $\lambda$/20 on the table of polishing machine, and RMS $\lambda$/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in $39.8\;{\mu}m$ of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of $27\;{\mu}m$ after re-installation of the optical system into SSO NESS Observatory in Australia.

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model (인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Ryu, Ho-Yoon;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.485-493
    • /
    • 2021
  • Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

A Study on Calibration Procedures for Ir-192 High Dose Rate Brachytherapy Sources (고선량률(HDR) 근접치료의 동위원소 Ir-192에 대한 측정방법에 관한 고찰)

  • Baek, Tae-Seong;Lee, Seung-Wook;Na, Soo-Kyong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • Purpose: To compare of the accuracy among various measurement procedures of HDR Brachytherapy, and to evaluate the clinical suitability and usefulness of alternative PMMA (polymethylmethacrylateplastics: $C_5H_8O_2$) plate phantom without any additional cost due to the purchase of measuring apparatus. Materials and Methods: We made a comparative study on three types of measuring systems: well type chamber, source calibration jig, and PMMA plate phantom. Farmer type chamber was used for source calibration jig method and PMMA plate phantom method. Measurement was done 5 times each in comparison with the measurement values from manufacturer. Measurement results from experiment were compared with that from the manufacturer which is offered with the source whenever a source is substituted by a new one and evaluate the accuracy of source activity. Results: As a consequence of Ir-192 source measurement using well type chamber, source calibration jig and PMMA plate phantom, RMS (Root Mean Square) values for the relative error are 0.6%, 1.57%, 2.1%, respectively, compared with the data from manufacturer. And the mean errors with standard deviation are given $-0.2{\pm}0.5%$, $0.97{\pm}1.23%$, $-0.89{\pm}1.87%$ respectively. Conclusion: From the results shown by the three types of measurement system (well type chamber, source calibration jig, and PMMA plate phantom), the measurement with well type chamber produced the best accuracy. It turns out that we can also use the alternative system of PMMA plate phantom clinically without purchasing any additional particular apparatus since the system does not exceed the recommendation of AAPM (American Association of Physicists in Medicine), which requires the error range of within ${\pm}5%$.

  • PDF

Accuracy Assessment of Tide Models in Terra Nova Bay, East Antarctica, for Glaciological Studies of DDInSAR Technique (DDInSAR 기반의 빙하연구를 위한 동남극 테라노바 만의 조위모델 정밀도 평가)

  • Han, Hyangsun;Lee, Joohan;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.375-387
    • /
    • 2013
  • Accuracy assessment of tide models in polar ocean has to be performed to accurately analyze tidal response of glaciers by using Double-Differential Interferometric SAR (DDInSAR) technique. In this study, we used 120 DDInSAR images generated from 16 one-day tandem COSMO-SkyMed DInSAR pairs obtained for 2 years and in situ tide height for 11 days measured by a pressure type wave recorder to assess the accuracy of tide models such as TPXO7.1, FES2004, CATS2008a and Ross_Inv in Terra Nova Bay, East Antarctica. Firstly, we compared the double-differential tide height (${\Delta}\dot{T}$) for Campbell Glacier Tongue extracted from the DDInSAR images with that predicted by the tide models. Tide height (T) from in situ measurement was compared to that of the tide models. We also compared 24-hours difference of tide height ($\dot{T}$) from in situ tide height with that from the tide models. The root mean square error (RMSE) of ${\Delta}\dot{T}$, T and $\dot{T}$ decreased after the inverse barometer effect (IBE)-correction of the tide models, from which we confirmed that the IBE of tide models should be corrected requisitely. The RMSE of $\dot{T}$ and ${\Delta}\dot{T}$ were smaller than that of T. This was because $\dot{T}$ is the difference of tide height during temporal baseline of the DInSAR pairs (24 hours), in which the errors from mean sea level of the tide models and in situ tide, and the tide constituents of $S_2$, $K_2$, $K_1$ and $P_1$ used in the tide models were canceled. This confirmed that $\dot{T}$ and ${\Delta}\dot{T}$ predicted by the IBE-corrected tide models can be used in DDInSAR technique. It was difficult to select an optimum tide model for DDInSAR in Terra Nova Bay by using in situ tide height measured in a short period. However, we could confirm that Ross_Inv is the optimum tide model as it showed the smallest RMSE of 4.1 cm by accuracy assessment using the DDInSAR images.

Determination of Nitrogen in Fresh and Dry Leaf of Apple by Near Infrared Technology (근적외 분석법을 응용한 사과의 생잎과 건조잎의 질소분석)

  • Zhang, Guang-Cai;Seo, Sang-Hyun;Kang, Yeon-Bok;Han, Xiao-Ri;Park, Woo-Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2004
  • A quicker method was developed for foliar analysis in diagnosis of nitrogen in apple trees based on multivariate calibration procedure using partial least squares regression (PLSR) and principal component regression (PCR) to establish the relationship between reflectance spectra in the near infrared region and nitrogen content of fresh- and dry-leaf. Several spectral pre-processing methods such as smoothing, mean normalization, multiplicative scatter correction (MSC) and derivatives were used to improve the robustness and performance of the calibration models. Norris first derivative with a seven point segment and a gap of six points on MSC gave the best result of partial least squares-1 PLS-1) model for dry-leaf samples with root mean square error of prediction (RMSEP) equal to $0.699g\;kg^{-1}$, and that the Savitzky-Golay first derivate with a seven point convolution and a quadratic polynomial on MSC gave the best results of PLS-1 model for fresh-samples with RMSEP of $1.202g\;kg^{-1}$. The best PCR model was obtained with Savitzky-Golay first derivative using a seven point convolution and a quadratic polynomial on mean normalization for dry leaf samples with RMSEP of $0.553g\;kg^{-1}$, and obtained with the Savitzky-Golay first derivate using a seven point convolution and a quadratic polynomial for fresh samples with RMSEP of $1.047g\;kg^{-1}$. The results indicate that nitrogen can be determined by the near infrared reflectance (NIR) technology for fresh- and dry-leaf of apple.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

Outlier Detection and Treatment for the Conversion of Chemical Oxygen Demand to Total Organic Carbon (화학적산소요구량의 총유기탄소 변환을 위한 이상자료의 탐지와 처리)

  • Cho, Beom Jun;Cho, Hong Yeon;Kim, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.207-216
    • /
    • 2014
  • Total organic carbon (TOC) is an important indicator used as an direct biological index in the research field of the marine carbon cycle. It is possible to produce the sufficient TOC estimation data by using the Chemical Oxygen Demand(COD) data because the available TOC data is relatively poor than the COD data. The outlier detection and treatment (removal) should be carried out reasonably and objectively because the equation for a COD-TOC conversion is directly affected the TOC estimation. In this study, it aims to suggest the optimal regression model using the available salinity, COD, and TOC data observed in the Korean coastal zone. The optimal regression model is selected by the comparison and analysis on the changes of data numbers before and after removal, variation coefficients and root mean square (RMS) error of the diverse detection methods of the outlier and influential observations. According to research result, it is shown that a diagnostic case combining SIQR (Semi - Inter-Quartile Range) boxplot and Cook's distance method is most suitable for the outlier detection. The optimal regression function is estimated as the TOC(mg/L) = $0.44{\cdot}COD(mg/L)+1.53$, then determination coefficient is showed a value of 0.47 and RMS error is 0.85 mg/L. The RMS error and the variation coefficients of the leverage values are greatly reduced to the 31% and 80% of the value before the outlier removal condition. The method suggested in this study can provide more appropriate regression curve because the excessive impacts of the outlier frequently included in the COD and TOC monitoring data is removed.

Development of Realtime Dam's Hydrologic Variables Prediction Model using Observed Data Assimilation and Reservoir Operation Techniques (관측자료 동화기법과 댐운영을 고려한 실시간 댐 수문량 예측모형 개발)

  • Lee, Byong Ju;Jung, Il-Won;Jung, Hyun-Sook;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.755-765
    • /
    • 2013
  • This study developed a real-time dam's hydrologic variables prediction model (DHVPM) and evaluated its performance for simulating historical dam inflow and outflow in the Chungju dam basin. The DHVPM consists of the Sejong University River Forecast (SURF) model for hydrologic modeling and an autoreservoir operation method (Auto ROM) for dam operation. SURF model is continuous rainfall-runoff model with data assimilation using an ensemble Kalman filter technique. The four extreme events including the maximum inflow of each year for 2006~2009 were selected to examine the performance of DHVPM. The statistical criteria, the relative error in peak flow, root mean square error, and model efficiency, demonstrated that DHVPM with data assimilation can simulate more close to observed inflow than those with no data assimilation at both 1-hour lead time, except the relative error in peak flow in 2007. Especially, DHVPM with data assimilation until 10-hour lead time reduced the biases of inflow forecast attributed to observed precipitation error. In conclusion, DHVPM with data assimilation can be useful to improve the accuracy of inflow forecast in the basin where real-time observed inflow are available.

Development of GPS Multipath Error Reduction Method Based on Image Processing in Urban Area (디지털 영상을 활용한 도심지 내 GPS 다중경로오차 경감 방법 개발)

  • Yoon, Sung Joo;Kim, Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • To determine the position of receiver, the GPS (Global Positioning System) uses position information of satellites and pseudo ranges based on signals. These are reflected by surrounding structures and multipath errors occur. This paper proposes a method for multipath error reduction using digital images to enhance the accuracy. The goal of the study is to calculate the shielding environment of receiver using image processing and apply it to GPS positioning. The proposed method, firstly, performs a preprocessing to reduce the effect of noise on images. Next, it uses hough transform to detect the outline of building roofs and determines mask angles and permissible azimuth range. Then, it classifies the satellites according to the condition using the image processing results. Finally, base on point positioning, it computes the receiver position by applying a weight model that assigns different weights to the classified satellites. We confirmed that the RMSE (Root Mean Square Error) was reduced by 2.29m in the horizontal direction and by 15.62m in the vertical direction. This paper showed the potential for the hybrid of GPS positioning and image processing technology.