Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
Structural Engineering and Mechanics
/
v.83
no.5
/
pp.671-680
/
2022
The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.11
/
pp.3780-3797
/
2022
The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.
In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra. In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) ≤ 0.25, for the whole body configuration, but three NPPs which participated in an additional lung configuration test in the fission and activation product category did not meet the criterion. Due to the low resolution of the FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and 137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks were located in a low-energy region below 300 keV. Since the ANN performed better than the PA method, it would be expected to be a promising approach to improve the accuracy and precision of in vivo FastScan measurement for the lung configuration.
Journal of the Korean Society of Industry Convergence
/
v.26
no.4_2
/
pp.715-724
/
2023
Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.463-463
/
2023
국내 수도관 보급률이 증가하면서 기존 노후화된 수도관들과 추가로 노후화된 수도관들이 증가하고 있다. 경과년수가 오래된 시설이 증가하는 것은 잠재적인 사고발생 위험을 증가시킨다. 실제 노후화된 상수도 시설물로 인해 단수, 누수, 수질오염, 지반함몰 발생이 증가하는 추세이다. 이러한 현상들은 시민들의 생활과 안전, 경제활동에 직접적인 영향을 끼치기 때문에 이에 대한 대책 마련이 시급한 상태이다. 본 연구에서는 AI를 기반으로 상수도관의 노후도 및 위험도를 예측하는 모델을 설계하고자 하였다. 대상지역을 인천광역시 서구로 선정하여 유량과 수질의 실시간 계측데이터를 수집하였다. 딥러닝 기법 중 하나인 LSTM(Long Short-Term Memory)을 이용하여 데이터를 예측하였고, 결정계수(R2)와 RMSE(Root Mean Square Error)로 학습데이터와 검증데이터의 비율을 정하여 예측도를 평가하였다. 유량과 수질 데이터 중 80%는 학습데이터로 20%는 검증 데이터로 분리하였고, LSTM의 셀과레이어 수를 해석에 적합한 범위로 설정한 결과, 실제값과 예측값이 높은 상관성을 보이는 것으로 나타났다. 예측된 유량 및 수질의 결과는 상수도 관리에 중요한 정보를 제공하며, 사고 위험도 평가와 관 노후화에 따른 대응력을 향상시키는 데 도움이 될 것으로 판단된다.
Abdullah O. Albugami;Abdullah S. Alomari;Abdullah I. Almarshad
Nuclear Engineering and Technology
/
v.55
no.9
/
pp.3388-3400
/
2023
Detailed analysis of the neutron pathway through matter inside the nuclear reactor core is exceedingly needed for safety and economic considerations. Due to the constant development of high-performance computing technologies, neutronics analysis using computer codes became more effective and efficient to perform sophisticated neutronics calculations. In this work, a commercial pressurized water reactor (PWR) presented by Virtual Environment for Reactor Applications (VERA) Core Physics Benchmark are modeled and simulated using a high-fidelity simulation of OpenMC code in terms of criticality and fuel pin power distribution. Various problems have been selected from VERA benchmark ranging from a simple two-dimension (2D) pin cell problem to a complex three dimension (3D) full core problem. The development of the code capabilities for reactor physics methods has been implemented to investigate the accuracy and performance of the OpenMC code against VERA SCALE codes. The results of OpenMC code exhibit excellent agreement with VERA results with maximum Root Mean Square Error (RMSE) values of less than 0.04% and 1.3% for the criticality eigenvalues and pin power distributions, respectively. This demonstrates the successful utilization of the OpenMC code as a simulation tool for a whole core analysis. Further works are undergoing on the accuracy of OpenMC simulations for the impact of different fuel types and burnup levels and the analysis of the transient behavior and coupled thermal hydraulic feedback.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.167-167
/
2022
최근 빅데이터에 관련된 연구에 있어 데이터의 품질관리에 대한 논의가 꾸준히 이뤄져 오고 있다. 특히 이미지 처리 및 분석에 활용되어온 딥러닝 기술의 경우, 분류 작업 및 패턴인식 등으로부터 데이터의 특징을 추출함으로써 비지도학습(Unsupervised Learning)을 가능하게 한다는 장점이 있음에도 불구하고 빅데이터를 다루는 과정에 있어 용량, 다양성, 속도 및 신뢰성 측면에서의 한계가 있었다. 본 연구에서는 CCTV 영상을 활용한 강수량 산정 모델 개발에 있어 예측 정확도 향상 및 성능 개선을 도모할 수 있는 데이터 전처리 방법을 제안하였다. 서울 근린 AWS 4개소 지역(김포장기, 하남덕풍, 강동, 성남) 및 중앙대학교 지점 내 CCTV를 설치한 후, 최대 9개월의 영상을 확보하여 강수량 산정을 위한 딥러닝 모델을 개발하였다. 배경분리, 조도조정, 영역설정, 데이터증진, 이상데이터 분류 등이 가능한 알고리즘을 개발함으로써 데이터셋 자체에 대한 전처리 작업을 수행한 후, 이에 대한 결과를 기존 관측자료와 비교·분석하였다. 본 연구에서 제안한 전처리 방법들을 적용한 결과, 강수량 산정 모델의 예측 정확도를 평가하는 지표로 선정한 평균 제곱근 편차(Root Mean Square Error; RMSE)가 약 30% 감소함을 확인하였다. 본 연구의 결과로부터 CCTV 영상 데이터를 활용한 강수량 산정의 가능성을 확인할 수 있었으며 특히, 딥러닝 모델 개발시 필요한 적정 전처리 방법들에 대한 기준을 제시할 수 있을 것으로 판단된다.
Taewoong Hwang;Mario R. Camana Acosta;Carla E. Garcia Moreta;Insoo Koo
International journal of advanced smart convergence
/
v.12
no.1
/
pp.92-100
/
2023
Wireless communication technology is becoming increasingly prevalent in smart factories, but the rise in the number of wireless devices can lead to interference in the ISM band and obstacles like metal blocks within the factory can weaken communication signals, creating radio shadow areas that impede information exchange. Consequently, accurately determining the radio communication coverage range is crucial. To address this issue, a Radio Environment Map (REM) can be used to provide information about the radio environment in a specific area. In this paper, a technique for estimating an indoor REM usinga mobile robot and machine learning methods is introduced. The mobile robot first collects and processes data, including the Received Signal Strength Indicator (RSSI) and location estimation. This data is then used to implement the REM through machine learning regression algorithms such as Extra Tree Regressor, Random Forest Regressor, and Decision Tree Regressor. Furthermore, the numerical and visual performance of REM for each model can be assessed in terms of R2 and Root Mean Square Error (RMSE).
In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.
PARK, TAE-SU;KEUM, JONGHAE;KIM, HOISUB;KIM, YOUNG ROCK;MIN, YOUNGHO
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.26
no.1
/
pp.23-48
/
2022
In this paper, we provide predictive models for the market price of fruits, and analyze the performance of each fruit price predictive model. The data used to create the predictive models are fruit price data, weather data, and Korea composite stock price index (KOSPI) data. We collect these data through Open-API for 10 years period from year 2011 to year 2020. Six types of fruit price predictive models are constructed using the LSTM algorithm, a special form of deep learning RNN algorithm, and the performance is measured using the root mean square error. For each model, the data from year 2011 to year 2018 are trained to predict the fruit price in year 2019, and the data from year 2011 to year 2019 are trained to predict the fruit price in year 2020. By comparing the fruit price predictive models of year 2019 and those models of year 2020, the model with excellent efficiency is identified and the best model to provide the service is selected. The model we made will be available in other countries and regions as well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.