• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.028 seconds

Development of a model to forecast the external migration rate in development projects reflecting city characteristics

  • Kim, Ki-Bum;Park, Joon;Seo, Jee-Won;Yu, Young-Jun;Hyun, In-Hwan;Koo, Ja-Yong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.406-419
    • /
    • 2018
  • In planning public service systems such as waterworks, the design population is very important factor. Owing to the limitations of the indirect method, two new models, which take into consideration urban characteristics, were developed to accurately predict external migration rate (EMR), which is an essential component in estimating reliably the design population. The root mean square error (RMSE) between the model values and observed values were 10.12 and 15.58 for the metropolitan cities and counties respectively and were lower compared to RMSE values of 27.31 and 28.79 obtained by the indirect method. Thus, the developed models provide a more accurate estimate of EMR than the indirect method. In addition, the major influencing factors for external migration in counties were development type, ageing index, number of businesses. On the other hand, the major influencing migration factors for cities were project scale, distance to city center, manufacturing size, population growth rate and residential environment. Future medium and long-term studies would be done to identify emerging trends to appropriately inform policy making.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

Application of Deep Learning to Solar Data: 6. Super Resolution of SDO/HMI magnetograms

  • Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyewon;Shin, Gyungin;Lim, Daye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2019
  • The Helioseismic and Magnetic Imager (HMI) is the instrument of Solar Dynamics Observatory (SDO) to study the magnetic field and oscillation at the solar surface. The HMI image is not enough to analyze very small magnetic features on solar surface since it has a spatial resolution of one arcsec. Super resolution is a technique that enhances the resolution of a low resolution image. In this study, we use a method for enhancing the solar image resolution using a Deep-learning model which generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained a model based on a very deep residual channel attention networks (RCAN) with HMI images in 2014 and test it with HMI images in 2015. We find that the model achieves high quality results in view of both visual and measures: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is much better than the conventional bi-cubic interpolation. We will apply this model to full-resolution SDO/HMI and GST magnetograms.

  • PDF

Application of Finite Mixture to Characterise Degraded Gmelina arborea Roxb Plantation in Omo Forest Reserve, Nigeria

  • Ogana, Friday Nwabueze
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • The use of single component distribution to describe the irregular stand structure of degraded forest often lead to bias. Such biasness can be overcome by the application of finite mixture distribution. Therefore, in this study, finite mixture distribution was used to characterise the irregular stand structure of the Gmelina arborea plantation in Omo forest reserve. Thirty plots, ten each from the three stands established in 1984, 1990 and 2005 were used. The data were pooled per stand and fitted. Four finite mixture distributions including normal mixture, lognormal mixture, gamma mixture and Weibull mixture were considered. The method of maximum likelihood was used to fit the finite mixture distributions to the data. Model assessment was based on negative loglikelihood value ($-{\Lambda}{\Lambda}$), Akaike information criterion (AIC), Bayesian information criterion (BIC) and root mean square error (RMSE). The results showed that the mixture distributions provide accurate and precise characterisation of the irregular diameter distribution of the degraded Gmelina arborea stands. The $-{\Lambda}{\Lambda}$, AIC, BIC and RMSE values ranged from -715.233 to -348.375, 703.926 to 1433.588, 718.598 to 1451.334 and 3.003 to 7.492, respectively. Their performances were relatively the same. This approach can be used to describe other irregular forest stand structures, especially the multi-species forest.

Data-Driven Modelling of Damage Prediction of Granite Using Acoustic Emission Parameters in Nuclear Waste Repository

  • Lee, Hang-Lo;Kim, Jin-Seop;Hong, Chang-Ho;Jeong, Ho-Young;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.

Evaluation of Multi-objective PSO Algorithm for SWAT Auto-Calibration (다목적 PSO 알고리즘을 활용한 SWAT의 자동보정 적용성 평가)

  • Jang, Won Jin;Lee, Yong Gwan;Kim, Se Hoon;Kim, Yong Won;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.113-113
    • /
    • 2018
  • 본 연구는 다목적 입자군집최적화(Particle Swarm Optimization, PSO) 알고리즘을 SWAT(Soil and Water Assessment Tool) 모형에 적용하여 자동보정 알고리즘의 적용 가능성을 평가하고자 한다. PSO 알고리즘은 Python을 활용해 다목적 함수를 고려할 수 있도록 새롭게 개발되었다. SWAT 모형의 유출 해석은 안성천의 공도 수위 관측소 상류유역($366.5km^2$)을 대상으로 하였으며, 공도 지점의 2000년부터 2017년까지의 일 유량 자료를 이용하여 검보정하였다. 모형을 위한 기상자료는 공도유역 주변 3개 기상관측소(수원, 천안, 이천)의 일별 강수량, 최고 및 최저기온, 평균 풍속, 상대습도 및 일사량을 구축하였다. SWAT 모형의 유출 해석은 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error), Nash-Sutcliffe 모형효율계수(NSE) 및 IOA(index of agreement) 등을 활용하여, 기존 연구 결과와 PSO 알고리즘을 활용한 결과를 비교 분석하고자 한다. 본 연구에서 개발한 다목적 PSO 알고리즘을 활용한 SWAT모형의 유출 해석은 보다 높은 정확도를 얻을 수 있을 것으로 예상되며, Python으로 개발되어 SWAT모형 이외에도 널리 적용될 수 있을 것으로 판단된다.

  • PDF

Numerical Study of Particle Collection Performance of Electrostatic Precipitator Integrated with Double Skin Façade in Residential Buildings (주거건물용 이중외피 통합형 전기집진기의 미세먼지 집진성능 수치해석 평가)

  • Eom, Ye Seul;Choi, Dong Hee;Kang, Dong Hwa
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.73-82
    • /
    • 2018
  • The objective of this study was to evaluate particle collection performance of electrostatic precipitator (ESP) integrated with double skin façade in naturally ventilated residential buildings using numerical method. To evaluate the efficiency, computational fluid dynamics (CFD) simulation based on electric potential and Lagrangian method was applied. The CFD model was validated by comparing the simulated results with the experimental data including thermal characteristic of double skin façade (DSF) and particle removal characteristic of electrostatic precipitator. The validation results showed that the root mean square error (RMSE) between predicted values and measured values of velocity and temperature in intermediate space of DSF was 1.2%. The adequacy of ion space charge density and turbulent model were determined. The RMSE between predicted values and measured values of collection efficiency of ESP was 9.2%. In addition, the case study was performed to present the application of the numerical method based on validation results of ESP integrated with façade.

Assessing the Applicability of Sea Cliff Monitoring Using Multi-Camera and SfM Method (멀티 카메라와 SfM 기법을 활용한 해식애 모니터링 적용가능성 평가)

  • Yu, Jae Jin;Park, Hyun-Su;Kim, Dong Woo;Yoon, Jeong-Ho;Son, Seung-Woo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.67-80
    • /
    • 2018
  • This study used aerial and terrestrial images to build a three-dimensional model of cliffs located in Pado beach using SfM (Structure from Motion) techniques. Using both images, the study purposed to reduce the shadow areas that were found when using only aerial images. Accuracy of the two campaigns was assessed by root mean square error, and monitored by M3C2 (Multiscale Model to Model Cloud Comparison) method. The result of the M3C2 in closed areas such as sea cave and notch did not express the landforms partly. However, eroded debris on sea cliffs were detected as eroded area by M3C2, as well as in captured pictures by multi-camera. The result of this study showed the applicability of multi-camera and SfM in monitoring changes of sea cliffs.

The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

  • Fadhillah, Muhammad Fulki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

A DNN-Based Personalized HRTF Estimation Method for 3D Immersive Audio

  • Son, Ji Su;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper proposes a new personalized HRTF estimation method which is based on a deep neural network (DNN) model and improved elevation reproduction using a notch filter. In the previous study, a DNN model was proposed that estimates the magnitude of HRTF by using anthropometric measurements [1]. However, since this method uses zero-phase without estimating the phase, it causes the internalization (i.e., the inside-the-head localization) of sound when listening the spatial sound. We devise a method to estimate both the magnitude and phase of HRTF based on the DNN model. Personalized HRIR was estimated using the anthropometric measurements including detailed data of the head, torso, shoulders and ears as inputs for the DNN model. After that, the estimated HRIR was filtered with an appropriate notch filter to improve elevation reproduction. In order to evaluate the performance, both of the objective and subjective evaluations are conducted. For the objective evaluation, the root mean square error (RMSE) and the log spectral distance (LSD) between the reference HRTF and the estimated HRTF are measured. For subjective evaluation, the MUSHRA test and preference test are conducted. As a result, the proposed method can make listeners experience more immersive audio than the previous methods.