• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.177 seconds

Uncertainty assessment caused by GCMs selection on hydrologic studies

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.151-151
    • /
    • 2018
  • The present study is aimed to quantifying the uncertainty in the general circulation model (GCM) selection and its impacts on hydrology studies in the basins. For this reason, 13 GCMs was selected among the 26 GCM models of the Fifth Assessment Report (AR5) scenarios. Then, the climate data and hydrologic data with two Representative Concentration Pathways (RCPs) of the best model (INMCM4) and worst model (HadGEM2-AO) were compared to understand the uncertainty associated with GCM models. In order to project the runoff, the Precipitation-Runoff Modelling System (PRMS) was driven to simulate daily river discharge by using daily precipitation, maximum and minimum temperature as inputs of this model. For simulating the discharge, the model has been calibrated and validated for daily data. Root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were applied as evaluation criteria. Then parameters of the model were applied for the periods 2011-2040, and 2070-2099 to project the future discharge the five large basins of South Korea. Then, uncertainty caused by projected temperature, precipitation and runoff changes were compared in seasonal and annual time scale for two future periods and RCPs compared to the reference period (1976-2005). The findings of this study indicated that more caution will be needed for selecting the GCMs and using the results of the climate change analysis.

  • PDF

Development of Automatic SWAT Calibration Algorithm Using NSGA-II Algorithm (NSGA-II를 활용한 SWAT 모형의 검보정 알고리즘 개발)

  • Lee, Yong Gwan;Jung, Chung Gil;Kim, Se Hoon;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.34-34
    • /
    • 2018
  • 본 연구는 다목적 유전자 알고리즘 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)를 활용하여 자동 검보정 알고리즘을 개발하고, 이를 준분포형 수문모형인 SWAT (Soil and Water Assessment Tool) 모형에 적용하여 평가하고자 한다. 집중형 모형과 달리, 분포형 모형은 유역 내 다양한 물리적 변수와 공간 이질성(spatial heterogeneity)을 표현하기 위한 많은 매개변수를 포함하고 있고, 최근에는 기후 변화와 장기 가뭄과 같은 이상 기후에 따른 물 부족, 수질 오염 및 녹조 현상 등을 고려하기 위해 매개변수의 시간적인 변동성을 고려하기 위한 연구도 수행되고 있다. 이에 따라 본 연구에서 개발한 다목적 알고리즘은 다양한 매개변수의 시공간적 특성을 고려할 수 있도록 작성되었으며, Python으로 개발하여 타 모형으로의 확장성 및 범용성을 고려하였다. SWAT 모형의 유출 해석은 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error), 모형 효율성 계수(Nash-Sutcliffe efficiency, NSE) 및 IOA(Index of agreement) 등을 활용해 기존 연구 결과와 비교분석할 수 있도록 하였으며, 사용자의 선택에 따라 다른 목적함수 또한 활용할 수 있도록 하였다. NSGA-II를 활용한 SWAT 모형의 유출 해석은 다목적 함수를 고려함에 따라 실측값과 높은 상관성을 보여줄 것으로 판단되며, 이상 기후 기간 설정에 따른 유동적인 매개변수 변화를 적용할 수 있을 것으로 기대된다.

  • PDF

Regional Frequency Analysis for Rainfall Data using the Burr XII Distribution (Burr XII 분포형을 이용한 강우자료 지역빈도해석)

  • Seo, Jungho;Shin, Hongjoon;Ahn, Hyunjun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.162-162
    • /
    • 2017
  • 최근 우리나라는 전 지구적인 기후변화로 인하여 집중호우 및 돌발 홍수와 같은 극치 사상들이 증가하고 있는 추세이며, 이에 대한 분석을 위해 극치 분포를 이용한 수문통계적 특성에 대한 접근이 주로 이루어지고 있다. 이를 위해서는 충분한 수의 자료가 필요하나 우리나라 강우자료는 지점별로 자료 보유 년 수가 비교적 많지 않기 때문에, 이러한 문제를 극복하기 위하여 하나의 지역, 즉 주어진 지점을 포함하여 수문학적으로 동일한 조건을 만족하는 주변 지점의 자료를 모두 포함하여 빈도해석을 실시하는 지역빈도해석이 필요하다. 따라서 본 연구에서는 지역빈도해석과 두 개의 형상매개변수를 포함하여 다양한 극치 수문통계특성을 나타낼 수 있다고 알려진 Burr XII 분포를 이용하여 우리나라 강우자료에 대한 그 적용성을 살펴보았다. 이를 위해 군집분석을 통한 강우지점의 지역화 과정을 거치고 분류된 지역을 L-moment ratio diagram에 도시하여, Burr XII 분포 영역 내 포함여부를 통해 Burr XII 분포의 적합도를 도시적으로 살펴보고, Hosking and Wallis (1997)이 제안한 적합성 척도($^{IST}$)를 통한 적합성 여부를 판별하였다. 또한 우리나라 강우자료에 비교적 적합하다고 알려진 분포인 generalized extreme value, generalized logistic, Gumbel 분포와의 비교를 위해, 전체 지역에 대하여 재현기간에 따른 상대편의 (relative bias)와 상대평균제곱근오차 (relative root mean square error)를 산정하여 Burr XII 분포형의 적용 가능성을 살펴보았다.

  • PDF

Comparative Assessment of Conceptual Rainfall-Runoff Models in terms of Complexity and Performance (복잡성과 정확도 기반 개념적 수문모형 비교 평가)

  • Song, Jung-Hun;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.564-564
    • /
    • 2016
  • 개념적 수문 모형은 탱크의 개수, 탱크 간 관계구조, 그리고 저류량과 유출량 간 선형/비선형 관계 정의 방식 등에 따라 다양한 형태로 개발되어왔으며, 각 모형마다 매개변수 수 및 입력 자료가 상이하다. 모형의 매개변수가 많아지면 결과가 좋게 나타날 수 있으나, 늘어난 매개변수에 대해 물리적 의미를 부여하고 해석하기가 쉽지 않다. 단순한 모형은 보정이 용이하고 그 특성상 실무에서 널리 이용되고 있으나, 물순환 구조가 복잡한 유역에 대해서는 적용성이 떨어질 수 있다. 하지만 매개변수의 수가 많은 모형이 적은 모형에 비해 항상 결과가 좋은 것은 아니다. 복잡한 모형은 부족한 안정성에 의해 보정 기간에서는 결과가 좋았으나, 검정 기간 대해 결과가 안 좋을 수도 있으며 이에 대한 평가가 필요하다. 본 연구에서는 국내에서 주로 이용되는 개념적 모형을 대상으로 모형의 복잡성과의 정확도의 관계를 비교 평가하고자 한다. 대상 모형으로는 수정 3단 Tank 모형, Im's Tank 모형, Two-Parametric Hyperbolic Model (TPHM), 그리고 Daily Watershed Streamflow Model (DAWAST)을 선정하였고, 대상유역으로는 이동저수지 상류에 위치한 2개 유역을 선정하였다. 모형 간 비교를 위한 정량적 통계적 지표로 $R^2$, Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), 그리고 percent bias (PBIAS)를 이용하였다. 본 연구 결과는 개념적 수문 모형에 대한 이해를 증진하고, 장기유출 해석을 위한 수문 모형의 선택 시 모형의 복잡도 및 정확도의 관점에서 도움을 줄 수 있는 기초자료로 이용될 수 있을 것이다.

  • PDF

Seasonality Analysis of Soil Moisture using Cyclostationary Empirical Orthogonal Function (CSEOF 분석을 이용한 토양수분의 계절성 분석)

  • Cho, Eunsaem;Lee, Hyoungtaek;Lee, Myungseob;Lee, Youngju;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.282-282
    • /
    • 2016
  • 지표수문해석모형이란 전 지구를 대상으로 수문해석 및 예측이 가능한 분포형 수문모형이다. 본 연구에서는 CSEOF(Cyclostationary Empirical Orthogonal Functions) 분석 방법을 이용하여 지표수문해석 모형 중 하나인 VIC(Variable Infiltration Capacity)모형의 토양수분 모의 성능을 평가해보고자 한다. 이를 위하여 먼저 남한에 대한 VIC 모형으로 모의한 토양수분 예측 결과와 관측자료를 수집하였다. 모의 성능 평가 기간은 1976년부터 2006년까지이다. 이후 본 연구에서는 수집된 VIC 모형의 예측 결과와 관측 자료에 대한 CSEOF 분석을 수행하여 각 자료의 월별 주된 변동 특성을 추출하였다. VIC 모형의 예측 결과와 관측자료의 상관관계는 CSEOF 분석 결과에 대한 Pattern Correlation으로 정량화되었다. 이와 더불어 본 연구에서는 모형의 모의 성능 평가에 주로 사용되는 NRMSE(Nomalized Root Mean Square Error)를 산정하여 예측 결과의 오차를 평가하였다. Pattern Correlation과 NRMSE를 모두 고려하여 VIC 모형의 성능을 평가해본 결과, 건기에 해당하는 기간과 우기에 해당하는 기간의 모의 성능이 다르게 나타났다. 본 연구의 결과는 추후에 지표수문해석 모형의 예측 결과를 이용하는 기후변화 관련 연구에 활용될 수 있을 것으로 판단된다.

  • PDF

Estimation of evapotranspiration in South Korea using Terra MODIS images and METRIC model (Terra MODIS 위성영상과 METRIC 모형을 이용한 전국 증발산량 산정)

  • Kim, Jin Uk;Lee, Yong Gwan;Chung, Jee Hun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.103-103
    • /
    • 2019
  • 본 연구에서는 Terra MODIS 위성영상과 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 모형을 이용하여 2012년부터 2017년까지 한반도 전국의 증발산량을 산정하고 플럭스 타워 실측 증발산량과 비교하였다. METRIC은 전 세계에 널리 적용된 바 있는 에너지 수지 기반의 Surface Energy Balance Algorithm for Land (SEBAL) 모형의 개념과 기술을 기반으로 현열(Sensible Heat Flux) 추정 모듈을 개선한 모형이다. 본 연구에서 METRIC 모형은 기존 C#으로 개발되어 있던 SEBAL 코드에서 현열 추정 모듈을 수정하였고 연산 속도 개선을 위해 Python으로 재작성하였다. METRIC 모형의 위성 자료로 Terra MODIS 위성의 MOD13A2(16day, 1km) NDVI, MOD11A1(Daily, 1km) Land Surface Temperature (LST) 및 MCD43A3(Daily, 500m) Albedo를 구축하였으며 500m 공간해상도의 Albedo는 1000m 해상도로 resample하여 활용하였다. 기상자료는 기상청 기상관측소의 풍속, 풍속측정높이, 습도, 10분 간격 이슬점 온도, 일사량 자료를 위성 자료와 같은 공간해상도로 내삽(Interpolation)하여 구축하였다. 모형결과 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측 자료와의 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error) relative RMSE (RMSE%), Nash-Sutcliffe efficiency (NSE) 및 IOA(Index of Agreement)를 산정하고, 기존 SEBAL 모형 결과와의 비교를 통해 본 모형의 개선점을 보이고자 한다.

  • PDF

River Water Level Prediction Method based on LSTM Neural Network

  • Le, Xuan Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.147-147
    • /
    • 2018
  • In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.

  • PDF

Numerical modelling of shelter effect of porous wind fences

  • Janardhan, Prashanth;Narayana, Harish
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.313-321
    • /
    • 2019
  • The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with numerical turbulence model, in particular, modified $k-{\varepsilon}$ model along with the experimental results. From the results, it was observed that the SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a lesser time as compared to modified $k-{\varepsilon}$ model. All the results are analyzed in terms of statistical measures, such as root mean square error, correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting recirculation length.

Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.571-581
    • /
    • 2015
  • Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.

MCNP-polimi simulation for the compressed-sensing based reconstruction in a coded-aperture imaging CAI extended to partially-coded field-of-view

  • Jeong, Manhee;Kim, Geehyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.199-207
    • /
    • 2021
  • This paper deals with accurate image reconstruction of gamma camera using a coded-aperture mask based on pixel-type CsI(Tl) scintillator coupled with silicon photomultipliers (SiPMs) array. Coded-aperture imaging (CAI) system typically has a smaller effective viewing angle than Compton camera. Thus, if the position of the gamma source to be searched is out of the fully-coded field-of-view (FCFOV) region of the CAI system, artifacts can be generated when the image is reconstructed by using the conventional cross-correlation (CC) method. In this work, we propose an effective method for more accurate reconstruction in CAI considering the source distribution of partially-coded field-of-view (PCFOV) in the reconstruction in attempt to overcome this drawback. We employed an iterative algorithm based on compressed-sensing (CS) and compared the reconstruction quality with that of the CC algorithm. Both algorithms were implemented and performed a systematic Monte Carlo simulation to demonstrate the possiblilty of the proposed method. The reconstructed image qualities were quantitatively evaluated in sense of the root mean square error (RMSE) and the peak signal-to-noise ratio (PSNR). Our simulation results indicate that the proposed method provides more accurate location information of the simulated gamma source than the CC-based method.