• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.028 seconds

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea (국내에서 ECOSTRESS 지표면 온도 및 증발산(PT-JPL) 자료의 검증)

  • Park, Ki Jin;Kim, Ki Young;Kim, Chan Young;Park, Jong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.637-648
    • /
    • 2024
  • The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea.

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF

The development of statistical methods for retrieving MODIS missing data: Mean bias, regressions analysis and local variation method (MODIS 손실 자료 복원을 위한 통계적 방법 개발: 평균 편차 방법, 회귀 분석 방법과 지역 변동 방법)

  • Kim, Min Wook;Yi, Jonghyuk;Park, Yeon Gu;Song, Junghyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.94-101
    • /
    • 2016
  • Satellite data for remote sensing technology has limitations, especially with visible range sensor, cloud and/or other environmental factors cause missing data. In this study, using land surface temperature data from the MODerate resolution Imaging Spectro-radiometer(MODIS), we developed retrieving methods for satellite missing data and developed three methods; mean bias, regression analysis and local variation method. These methods used the previous day data as reference data. In order to validate these methods, we selected a specific measurement ratio using artificial missing data from 2014 to 2015. The local variation method showed low accuracy with root mean square error(RMSE) more than 2 K in some cases, and the regression analysis method showed reliable results in most cases with small RMSE values, 1.13 K, approximately. RMSE with the mean bias method was similar to RMSE with the regression analysis method, 1.32 K, approximately.

Predictability of Temperature over South Korea in PNU CGCM and WRF Hindcast (PNU CGCM과 WRF를 이용한 남한 지역 기온 예측성 검증)

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Jung, Myung-Pyo;Jeong, Ha-Gyu;Kim, Young-Hyun;Kim, Eung-Sup
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.479-490
    • /
    • 2018
  • This study assesses the prediction skill of regional scale model for the mean temperature anomaly over South Korea produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. The initial and boundary conditions of WRF are derived from PNU CGCM. The hindcast period is 11 years from 2007 to 2017. The model's prediction skill of mean temperature anomaly is evaluated in terms of the temporal correlation coefficient (TCC), root mean square error (RMSE) and skill scores which are Heidke skill score (HSS), hit rate (HR), false alarm rate (FAR). The predictions of WRF and PNU CGCM are overall similar to observation (OBS). However, TCC of WRF with OBS is higher than that of PNU CGCM and the variation of mean temperature is more comparable to OBS than that of PNU CGCM. The prediction skill of WRF is higher in March and April but lower in October to December. HSS is as high as above 0.25 and HR (FAR) is as high (low) as above (below) 0.35 in 2-month lead time. According to the spatial distribution of HSS, predictability is not concentrated in a specific region but homogeneously spread throughout the whole region of South Korea.

Development of Code-PPP Based on Multi-GNSS Using Compact SSR of QZSS-CLAS (QZSS-CLAS의 Compact SSR을 이용한 다중 위성항법 기반의 Code-PPP 개발)

  • Lee, Hae Chang;Park, Kwan Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.521-531
    • /
    • 2020
  • QZSS (Quasi-Zenith Satellite System) provides the CLAS (Centimeter Level Augmentation Service) through the satellite's L6 band. CLAS provides correction messages called C-SSR (Compact - State Space Representation) for GPS (Global Positioning System), Galileo and QZSS. In this study, CLAS messages were received by using the AsteRx4 of Septentrio which is a GPS receiver capable of receiving L6 bands, and the messages were decoded to acquire C-SSR. In addition, Multi-GNSS (Global Navigation Satellite System) Code-PPP (Precise Point Positioning) was developed to compensate for GNSS errors by using C-SSR to pseudo-range measurements of GPS, Galileo and QZSS. And non-linear least squares estimation was used to estimate the three-dimensional position of the receiver and the receiver time errors of the GNSS constellations. To evaluate the accuracy of the algorithms developed, static positioning was performed on TSK2 (Tsukuba), one of the IGS (International GNSS Service) sites, and kinematic positioning was performed while driving around the Ina River in Kawanishi. As a result, for the static positioning, the mean RMSE (Root Mean Square Error) for all data sets was 0.35 m in the horizontal direction ad 0.57 m in the vertical direction. And for the kinematic positioning, the accuracy was approximately 0.82 m in horizontal direction and 3.56 m in vertical direction compared o the RTK-FIX values of VRS.

Estimation of hourly daytime air temperature on slope in complex terrain corrected by hourly solar radiation (복잡지형 경사면의 일사 영향을 반영한 매시 낮 기온 추정 방법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.376-385
    • /
    • 2018
  • To estimate the hourly temperature distribution due to solar radiation during the day, on slope in complex terrain, an empirical formula was developed including the hourly deviation in the observed temperature following solar radiation deviation, at weather stations on the east-facing and west-facing slopes. The solar radiation effect was simulated using the empirical formula to estimate hourly temperature at 11 weather observation sites in mountainous agricultural areas, and the result was verified for the period from January 2015 to December 2017. When the estimated temperature was compared with the control, only considering temperature lapse rate, it was found that the tendency to underestimate the temperature from 9 am to 3 pm was reduced with the use of an empirical formula in the form of linear expression; consequently, the estimation error was reduced as well. However, for the time from 5 pm to 6 pm, the estimation error was smaller when a hyperbolic equation drawn from the deviation in solar radiation on the slope, which was calculated based on geometric conditions, was used instead of observed values. The reliability of estimating the daytime temperature at 3 pm was compared with existing estimation model proposed in other studies; the estimation error could be mitigated up to an ME (mean error) of $-0.28^{\circ}C$ and RMSE (root mean square error) of $1.29^{\circ}C$ compared to the estimation error in previous models (ME $-1.20^{\circ}C$, RMSE $2.01^{\circ}C$).

Simultaneous Adjustment of Geodetic Networks by Geographical Coordinates φ, λ (경위도(經緯度) 좌표(座標) φ, λ에 의한 측지망(測地網)의 동시조정(同時調整))

  • Baick, Eun Kee;Lee, Young Jin;Choi, Yun Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.121-127
    • /
    • 1985
  • This paper deals with simultaneous geodetic networks adjustment by geographical coordinates(${\varphi}$, ${\lambda}$). The adjustment computation is performed by variation of coordinates, and the classical method with fixed points and free networks are also compared. Provisional values for observation equations are computed by extended Gauss-mid lattitude formula using existing official coordinates. Bessel ellipsoid and unit weight are adopted. The processing of a test-network by distances yields the average root mean square error of position 6.2 cm for classical method and 2.4cm for free networks. The standard error of unit weight in a test-network is $1.66{\times}10^{-6}$ radian (0.3"), and the analysis of error ellipses shows that free networks are more normally distributed errors.

  • PDF

Study of Spectral Reflectance Reconstruction Based on an Algorithm for Improved Orthogonal Matching Pursuit

  • Leihong, Zhang;Dong, Liang;Dawei, Zhang;Xiumin, Gao;Xiuhua, Ma
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.515-523
    • /
    • 2016
  • Spectral reflectance is sparse in space, and while the traditional spectral-reconstruction algorithm does not make full use of this characteristic sparseness, the compressive sensing algorithm can make full use of it. In this paper, on the basis of analyzing compressive sensing based on the orthogonal matching pursuit algorithm, a new algorithm based on the Dice matching criterion is proposed. The Dice similarity coefficient is introduced, to calculate the correlation coefficient of the atoms and the residual error, and is used to select the atoms from a library. The accuracy of Spectral reconstruction based on the pseudo-inverse method, Wiener estimation method, OMP algorithm, and DOMP algorithm is compared by simulation on the MATLAB platform and experimental testing. The result is that spectral-reconstruction accuracy based on the DOMP algorithm is higher than for the other three methods. The root-mean-square error and color difference decreases with an increasing number of principal components. The reconstruction error decreases as the number of iterations increases. Spectral reconstruction based on the DOMP algorithm can improve the accuracy of color-information replication effectively, and high-accuracy color-information reproduction can be realized.

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.