DOI QR코드

DOI QR Code

Validation of ECOSTRESS Based Land Surface Temperature and Evapotranspiration (PT-JPL) Data Across Korea

국내에서 ECOSTRESS 지표면 온도 및 증발산(PT-JPL) 자료의 검증

  • Park, Ki Jin (Korea National University of Transportation) ;
  • Kim, Ki Young (Korea Institute of Hydrological Survey) ;
  • Kim, Chan Young (Korea National University of Transportation) ;
  • Park, Jong Min (Korea National University of Transportation)
  • 박기진 (국립한국교통대학교 환경공학과) ;
  • 김기영 (한국수자원조사기술원 조사기획실) ;
  • 김찬영 (국립한국교통대학교 환경공학전공) ;
  • 박종민 (국립한국교통대학교 환경공학전공)
  • Received : 2024.03.28
  • Accepted : 2024.07.11
  • Published : 2024.10.01

Abstract

The frequency of extreme weather events such as heavy and extreme rainfall has been increasing due to global climate change. Accordingly, it is essential to quantify hydrometeorological variables for efficient water resource management. Among the various hydro-meteorological variables, Land Surface Temperature (LST) and Evapotranspiration (ET) play key roles in understanding the interaction between the surface and the atmosphere. In Korea, LST and ET are mainly observed through ground-based stations, which also have limitation in obtaining data from ungauged watersheds, and thus, it hinders to estimate spatial behavior of LST and ET. Alternatively, remote sensing-based methods have been used to overcome the limitation of ground-based stations. In this study, we evaluated the applicability of the National Aeronautics and Space Administration's (NASA) ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST and ET data estimated across Korea (from July 1, 2018 to December 31, 2022). For validation, we utilized NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data and eddy covariance flux tower observations managed by agencies under the Ministry of Environment of South Korea. Overall, results indicated that ECOSTRESS-based LSTs showed similar temporal trends (R: 0.47~0.73) to MODIS and ground-based observations. The index of agreement also showed a good agreement of ECOSTRESS-based LST with reference datasets (ranging from 0.82 to 0.91), although it also revealed distinctive uncertainties depending on the season. The ECOSTRESS-based ET demonstrated the capability to capture the temporal trends observed in MODIS and ground-based ET data, but higher Mean Absolute Error and Root Mean Square Error were also exhibited. This is likely due to the low acquisition rate of the ECOSTRESS data and environmental factors such as cooling effect of evapotranspiration, overestimation during the morning. This study suggests conducting additional validation of ECOSTRESS-based LST and ET, particularly in topographical and hydrological aspects. Such validation efforts could enhance the practical application of ECOSTRESS for estimating basin-scale LST and ET in Korea.

전 세계적인 기후변화의 영향으로 폭우 및 극한 강우 등 이상기후의 발생 빈도가 증가하는 추세이다. 이에 따른 효율적인 수자원 관리 대책 수립을 위해 수문기상인자를 정량화하는 것은 필수적이다. 다양한 수문기상인자 중 지표면 온도(Land Surface Temperature; LST)와 증발산(Evapotranspiration; ET)은 지표와 대기에서의 수문 및 에너지 순환을 이해하는 데 핵심적인 역할을 수행한다. 국내에서는 주로 지점 기반 관측 방법을 통해 LST와 ET를 관측하고 있지만, 이러한 방법은 미계측 유역에서의 자료 수득이 제한되며, 불균형한 관측소의 밀도로 인해 관측한 자료를 유역 단위 자료로 공간화할 수 없는 한계점이 존재한다. 이를 극복하기 위해 국내·외에서는 원격탐사를 기반으로 한 수문기상인자의 추정 방법을 활용하고 있다. 이에 본 연구에서는 2018년 7월 1일부터 2022년 12월 31일까지 국내를 대상으로 추정한 NASA (National Aeronautics and Space Administration)의 ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) LST 및 ET 자료의 정확도를 평가하였다. 연구 과정에서 ECOSTRESS 자료의 비교 및 분석을 위해 기존 검증이 이루어진 NASA의 MODIS (MODerate Resolution Imaging Spectroradiometer) 자료와 환경부 산하 기관(홍수통제소 및 한국수자원조사기술원)에서 관리하는 에디 공분산 기반 플럭스 타워(Eddy covariance flux tower) 관측 자료를 활용하였다. 연구결과 ECOSTRESS LST는 MODIS 및 지점 자료(R: 0.47~0.73)와 유사한 시계열적 경향성을 보였다. Index of agreement 또한 0.82~0.91의 범위를 나타냈지만, 계절적 특성에 따라 뚜렷한 불확실성을 보였다. ECOSTRESS ET의 경우 전반적으로 MODIS 및 지점 자료와 유사한 시계열적 경향성을 나타냈지만, 평균절대오차(Mean Absolute Error) 및 평균제곱근오차(Root Mean Square Error)가 높게 나타났다. 이는 ECOSTRESS 자료의 수득률 및 환경적 요인(증산에 의한 Cooling effect, 오전 시간대 과대 산정 등)이 영향을 미친 것으로 파악된다. 추후 연구를 통해 이러한 문제점을 해결하고, 지형학적·수문 학적 검정 및 보정을 통해 실질적으로 국내에서 ECOSTRESS를 기반으로 한 유역 단위 LST, ET의 추정이 가능할 것으로 판단된다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(RS-2024-00346383).

References

  1. Anderson, M. C., Kustas, W. P., Hain, C. R., Cammalleri, C., Gao, F., Yilmaz, M., Mladenova, I., Otkin, J., Schull, M. and Houborg, R. (2013). "Mapping surface fluxes and moisture conditions from field to global scales using ALEXI/DisALEXI." Remote Sensing of Energy Fluxes and Soil Moisture Content, pp. 207-232.
  2. Baek, J. and Choi, M. (2012). "Availability of Land Surface Temperature from the COMS in the Korea Peninsula." Journal of Korea Water Resources Association, Vol. 45, No. 8, pp. 755-765, https://doi.org/10.3741/JKWRA.2012.45.8.755 (in Korean).
  3. Baik, J., Jeong, J., Park, J. and Choi, M. (2019). "A study on the analyzing of uncertainty for actual evapotranspiration: flux tower, satellite-based and reanalysis based dataset." Journal of Korea Water Resources Association, Vol. 52, No. 1, pp. 11-19, https://doi.org/10.3741/JKWRA.2019.52.1.11 (in Korean).
  4. Baik, J., Park, J. and Choi, M. (2016). "Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products." Journal of Korea Water Resources Association, Vol. 49, No. 11, pp. 903-912, https://doi.org/10.3741/JKWRA.2016.49.11.903 (in Korean).
  5. Baik, J., Park, J., Jun, C. and Lee, J. (2022). "Adequacy of the GK-2A AMI land surface temperature product according to geographic factors and compared with other satellite products (Modis and S-VIRRS)." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 3, pp. 15-23, https://doi.org/10.9798/kosham.2022.22.3.15 (in Korean).
  6. Fang, H., Li, W. and Myneni, R. B. (2013). "The impact of potential land cover misclassification on MODIS leaf area index (LAI) estimation: A statistical perspective." Remote Sensing, Vol. 5, No. 2, pp. 830-844, https://doi.org/10.3390/rs5020830.
  7. Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse-Nicholson, K., Wang, A., Anderson, R. G., Aragon, B., Arain, M. A., Baldocchi, D. D., Baker, J. M., Barral, H., Bernacchi, C. J., Bernhofer, C., Biraud, S. C., Bohrer, G., Brunsell, N., Cappelaere, B., Castro-Contreras, S., Chun, J., Conrad, B. J., Cremonese, E., Demarty, J., Desai, A. R., De Ligne, A., Foltynova, L., Goulden, M. L., Griffis, T. J., Grunwald, T., Johnson, M. S., Kang, M., Kelbe, D., Kowalska, N., Lim, J.-H., Mainassara, I., McCabe, M. F., Missik, J. E. C., Mohanty, B. P., Moore, C. E., Morillas, L., Morrison, R., Munger, J. W., Posse, G., Richardson, A. D., Russell, E. S., Ryu, Y., Sanchez-Azofeifa, A., Schmidt, M., Schwartz, E., Sharp, I., Sigut, L., Tang, Y., Hulley, G., Anderson, M., Hain, C., French, A., Wood, E. and Hook, S. (2020). "ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the international space station." Water Resources Research, Vol. 56, No. 4, e2019WR026058, https://doi.org/10.1029/2019WR026058.
  8. Fisher, J. B., Tu, K. P. and Baldocchi, D. D. (2008). "Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites." Remote Sensing of Environment, Vol. 112, No. 3, pp. 901-919, https://doi.org/10.1016/j.rse.2007.06.025.
  9. Hulley, G. and Hook, S. E. (2018). "ECOsystem spaceborne thermal radiometer experiment on space station (ECOSTRESS): level-2 land surface temperature and emissivity algorithm theoretical basis document (ATBD)." Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA.
  10. June, T., Evans, J. R. and Farquhar, G. D. (2004). "A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf." Functional Plant Biology, Vol. 31, No. 3, pp. 275-283, https://doi.org/10.1071/FP03250.
  11. Jee, J., Kim, B., Zo, I., Lee, K. and Choi, Y. (2016). "Retrieval of land surfacetemperature based on high resolution landsat 8 satellite data." Korean Journal of Remote Sensing, Vol. 32, No. 2, pp. 171-183, https://doi.org/10.7780/kjrs.2016.32.2.9 (in Korean).
  12. Kim, Y. (2017). "Surface temperature retrieval using infrared remote sensing data." Current Industrial and Technological Trends in Aerospace, Vol. 15, No. 2, pp. 182-196 (in Korean).
  13. Kim, K., Baik, J., Lee, J., Lee, Y., Jung, S. and Choi, M. (2016). "An assessment and analysis of the gap-filling techniques for revising missing data of flux tower based evapotranspiration - FAO-PM, MDV, and Kalman Filter -." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 6, pp. 95-107, https://doi.org/10.9798/KOSHAM.2016.16.6.95 (in Korean).
  14. Liang, L., Feng, Y., Wu, J., He, X., Liang, S., Jiang, X., Oliveira, G., Qiu, J. and Zeng, Z. (2022). "Evaluation of ECOSTRESS evapotranspiration estimates over heterogeneous landscapes in the continental US." Journal of Hydrology, Vol. 613, 128470, https://doi.org/10.1016/j.jhydrol.2022.128470.
  15. Liu, N., Oishi, A. C., Miniat, C. F. and Bolstad, P. (2021). "An evaluation of ECOSTRESS products of a temperate montane humid forest in a complex terrain environment." Remote Sensing of Environment, Vol. 265, No. 112662, https://doi.org/10.1016/j.rse.2021.112662.
  16. McMillin, Larry M. (1975). "Estimation of sea surface temperatures from two infrared window measurements with different absorption." Journal of Geophysical Research, Vol. 80, No. 36, pp. 5113-5117, https://doi.org/10.1029/JC080i036p05113.
  17. Mu, Q., Zhao, M. and Running, S. W. (2013). "MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3)." Algorithm Theoretical Basis Document, Collection, 5, 600.
  18. Neteler, M. (2010). "Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data." Remote Sensing, Vol. 2, No. 1, pp. 333-351, https://doi.org/10.3390/rs1020333.
  19. Price, J. C. (1984). "Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer." Journal of Geophysical Research: Atmospheres, Vol. 89, No. D5, pp. 7231-7237, https://doi.org/10.1029/JD089iD05p07231.
  20. Park, J., Baik, J. and Choi, M. (2017). "Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia." Catena, Vol. 156, pp. 305-314, https://doi.org/10.1016/j.catena.2017.04.013.
  21. Pan, Y., Gao, Y. and Li, S. (2021). "Impacts of land use/land cover distributions and vegetation amount on land surface temperature simulation in east China." Earth and Space Science, Vol. 8, No. 5, e2020EA001544, https://doi.org/10.1029/2020EA001544.
  22. Park, S. and Kim, M. (2021). "Availability of land surface temperature using landsat 8 OLI/TIRS science products." Korean Journal of Remote Sensing, Vol. 37, No. 3, pp. 463-473, https://doi.org/10.7780/kjrs.2021.37.3.8 (in Korean).
  23. Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A. and Klooster, S. A. (1993). "Terrestrial ecosystem production: A process model based on global satellite and surface data." Global Biogeochemical Cycles, Vol. 7, No. 4, pp. 811-841, https://doi.org/10.1029/93GB02725.
  24. Ruhoff, A. L., Paz, A. R., Aragao, L. E. O. C., Mu, Q., Malhi, Y., Collischonn, W., Rocha, H. R. and Running, S. W. (2013). "Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin." Hydrological Sciences Journal, Vol. 58, No. 8, pp. 1658-1676, https://doi.org/10.1080/02626667.2013.837578.
  25. Stone, P. H., Chow, S. and Quirr, W. J. (1977). "The July climate and a comparison of the January and July climates simulated by the GISS general circulation model." Monthly Weather Review, Vol. 105, No. 2, pp. 170-194, https://doi.org/10.1175/1520-0493(1977)105<0170:TJCAAC>2.0.CO;2.
  26. Sur, C., Han, S., Lee, J. and Choi, M. (2012). "Estimation of satellite-based spatial evapotranspiration and validation of fluxtower measurements by eddy covariance method." Korean Journal of Remote Sensing, Vol. 28, No. 4, pp. 435-448, https://doi.org/10.7780/kjrs.2012.28.4.7 (in Korean).
  27. Valdes-Uribe, A., Holscher, D. and Roll, A. (2023). "ECOSTRESS reveals the importance of topography and forest structure for evapotranspiration from a tropical forest region of the andes." Remote Sensing, Vol. 15, No. 12, pp. 2985, https://doi.org/10.3390/rs15122985.
  28. Wang, K. and Dickinson, R. E. (2012). "A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability." Reviews of Geophysics, Vol. 50, No. 2, https://doi.org/10.1029/2011RG000373.
  29. Wan, Z., Zhang, Y., Zhang, Q. and Li, Z. L. (2004). "Quality assessment and validation of the MODIS global land surface temperature." International Journal of Remote Sensing, Vol. 25, No. 1, pp. 261-274, https://doi.org/10.1080/0143116031000116417.
  30. Yang, Y., Roderick, M. L., Guo, H., Miralles, D. G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T. R., Tu, Z., Keenan, T. F., Fisher, J. B., Gan, R., Zhang, X., Piao, S., Zhang, B. and Yang, D. (2023). "Evapotranspiration on a greening Earth." Nature Reviews Earth & Environment, Vol. 4, No. 9, pp. 626-641, https://www.nature.com/articles/s43017-023-00464-3.
  31. Zhang, Q., Xiao, X., Braswell, B. H., Linder, E., Aber, J. and Moore, B. (2005). "Estimating seasonal dynamics of biophysical and biochemical parameters in a deciduous forest using MODIS data and a radiative transfer model." Remote Sensing of Environment, Vol. 99, pp. 357-371.