• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.025 seconds

Immediate Effect of Neuromuscular Electrical Stimulation on Balance and Proprioception During One-leg Standing

  • Je, Jeongwoo;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.187-193
    • /
    • 2022
  • Background: Neuromuscular electrical stimulation (NMES) is a physical modality used to activate skeletal muscles for strengthening. While voluntary muscle contraction (VMC) follows the progressive recruitment of motor units in order of size from small to large, NMES-induced muscle contraction occurs in a nonselective and synchronous pattern. Therefore, the outcome of muscle strengthening training using NMES-induced versus voluntary contraction might be different, which might affect balance performance. Objects: We examined how the NMES training affected balance and proprioception. Methods: Forty-four young adults were randomly assigned to NMES and VMC group. All participants performed one-leg standing on a force plate and sat on the Biodex (Biodex R Corp.) to measure balance and ankle proprioception, respectively. All measures were conducted before and after a training session. In NMES group, electric pads were placed on the tibialis anterior, gastrocnemius, and soleus muscles for 20 minutes. In VMC group, co-contraction of the three muscles was conducted. Outcome variables included mean distance, root mean square distance, total excursion, mean velocity, 95% confidence circle area acquired from the center of pressure data, and absolute error of dorsi/plantarflexion. Results: None of outcome variables were associated with group (p > 0.35). However, all but plantarflexion error was associated with time (p < 0.02), and the area and mean velocity were 37.0% and 18.6% lower in post than pre in NMES group, respectively, and 48.9% and 16.7% lower in post than pre in VMC group, respectively. Conclusion: Despite different physiology underlying the NMES-induced versus VMC, both training methods improved balance and ankle joint proprioception.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

Comparison of Different Multiple Linear Regression Models for Real-time Flood Stage Forecasting (실시간 수위 예측을 위한 다중선형회귀 모형의 비교)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.9-20
    • /
    • 2012
  • Recently to overcome limitations of conceptual, hydrological and physics based models for flood stage forecasting, multiple linear regression model as one of data-driven models have been widely adopted for forecasting flood streamflow(stage). The objectives of this study are to compare performance of different multiple linear regression models according to regression coefficient estimation methods and determine most effective multiple linear regression flood stage forecasting models. To do this, the time scale was determined through the autocorrelation analysis of input data and different flood stage forecasting models developed using regression coefficient estimation methods such as LS(least square), WLS(weighted least square), SPW(stepwise) was applied to flood events in Jungrang stream. To evaluate performance of established models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient (NSEC), mean absolute error (MAE), adjusted coefficient of determination($R^{*2}$). The results show that the flood stage forecasting model using SPW(stepwise) parameter estimation can carry out the river flood stage prediction better in comparison with others, and the flood stage forecasting model using LS(least square) parameter estimation is also found to be slightly better than the flood stage forecasting model using WLS(weighted least square) parameter estimation.

Correction of Coordinate Discontinuities Caused by GPS Antenna Replacements

  • Kim, Dusik;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • Antennas at permanent GPS stations operated by the former Ministry of Government Administration and Home Affairs (MOGAHA) in Korea were replaced in years 2008 and 2009, and these changes caused abrupt discontinuities in precise coordinate time series. In this study, an algorithm that eliminates those breaks was developed based on 15-year-long coordinate time series for the purpose of creating clean and continuous coordinate time series. The newly developed algorithm to correct for sudden jumps and dips in the GPS time series due to the antenna change was designed to consider all the linear and annual signals observed before and after the event. The accuracy of the new algorithm was confirmed to be at the Root Mean Square Error (RMSE) level of 2.3-2.6 mm. The new algorithm was also found to be capable of reflect site-specific characteristics at each station.

Development of Yield Forecast Models for Vegetables Using Artificial Neural Networks: the Case of Chilli Pepper (인공 신경망을 이용한 채소 단수 예측 모형 개발: 고추를 중심으로)

  • Lee, Choon-Soo;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.555-567
    • /
    • 2017
  • This study suggests the yield forecast model for chilli pepper using artificial neural network. For this, we select the most suitable network models for chilli pepper's yield and compare the predictive power with adaptive expectation model and panel model. The results show that the predictive power of artificial neural network with 5 weather input variables (temperature, precipitation, temperature range, humidity, sunshine amount) is higher than the alternative models. Implications for forecasting of yields are suggested at the end of this study.

A Method for Screening Product Design Variables for Building A Usability Model : Genetic Algorithm Approach (사용편의성 모델수립을 위한 제품 설계 변수의 선별방법 : 유전자 알고리즘 접근방법)

  • Yang, Hui-Cheol;Han, Seong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-62
    • /
    • 2001
  • This study suggests a genetic algorithm-based partial least squares (GA-based PLS) method to select the design variables for building a usability model. The GA-based PLS uses a genetic algorithm to minimize the root-mean-squared error of a partial least square regression model. A multiple linear regression method is applied to build a usability model that contains the variables seleded by the GA-based PLS. The performance of the usability model turned out to be generally better than that of the previous usability models using other variable selection methods such as expert rating, principal component analysis, cluster analysis, and partial least squares. Furthermore, the model performance was drastically improved by supplementing the category type variables selected by the GA-based PLS in the usability model. It is recommended that the GA-based PLS be applied to the variable selection for developing a usability model.

  • PDF

Performance Analysis of Photovoltaic Power System in Saudi Arabia (사우디아라비아 태양광 발전 시스템의 성능 분석)

  • Oh, Wonwook;Kang, Soyeon;Chan, Sung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • We have analyzed the performance of 58 kWp photovoltaic (PV) power systems installed in Jeddah, Saudi Arabia. Performance ratio (PR) of 3 PV systems with 3 desert-type PV modules using monitoring data for 1 year showed 85.5% on average. Annual degradation rate of 5 individual modules achieved 0.26%, the regression model using monitoring data for the specified interval of one year showed 0.22%. Root mean square error (RMSE) of 6 big data analysis models for power output prediction in May 2016 was analyzed 2.94% using a support vector regression model.

Modelling CO2 and NOx on signalized roundabout using modified adaptive neural fuzzy inference system model

  • Sulaiman, Ghassan;Younes, Mohammad K.;Al-Dulaimi, Ghassan A.
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.107-113
    • /
    • 2018
  • Air quality and pollution have recently become a major concern; vehicle emissions significantly pollute the air, especially in large and crowded cities. There are various factors that affect vehicle emissions; this research aims to find the most influential factors affecting $CO_2$ and $NO_x$ emissions using Adaptive Neural Fuzzy Inference System (ANFIS) as well as a systematic approach. The modified ANFIS (MANFIS) was developed to enhance modelling and Root Mean Square Error was used to evaluate the model performance. The results show that percentages of $CO_2$ from trucks represent the best input combination to model. While for $NO_x$ modelling, the best pair combination is the vehicle delay and percentage of heavy trucks. However, the final MANFIS structure involves two inputs, three membership functions and nine rules. For $CO_2$ modelling the triangular membership function is the best, while for $NO_x$ the membership function is two-sided Gaussian.

A Concept of Fuzzy Wavelets based on Rank Operators and Alpha-Bands

  • Nobuhara, Hajime;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.46-49
    • /
    • 2003
  • A concept of fuzzy wavelets is proposed by a fuzzification of morphological wavelets. In the proposed fuzzy wavelets, analysis and synthesis schemes can be formulated as the operations of fuzzy relational calculus. In order to perform an efficient compression and reconstruction, an alphaband is also proposed as a soft thresholding of the wavelets. In the image compression/reconstruction experiment using test images extracted Standard Image DataBAse (SIDBA), it is confirmed that the root mean square error (RMSE) of the proposed soft thresholding is decreased to 87.3% of the conventional hard thresholding.

  • PDF

Study on the Fast Predication of the Wind-Driven Current in the Sachon Bay (사천만에서 취송류의 신속예측에 관한 연구)

  • 최석원;조규대;김동선
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.309-318
    • /
    • 1999
  • In order to fast predict the wind-driven current in a small bay, a convolution method in which the wind-driven current can be generated only wih the local wind is developed and applied in the Sachon Bay. The root mean square(rms) ratio defined as the ratio of the rms error to the rms speed is 0.37. The rms ratio is generally less than 0.2, except for all the mouths of Junju Bay and Namhae-do and in the region between Saryang Island and Sachon. The spatial average of the recover rate of kinetic energy(rrke) is 87%. Thus, the predicted wind-driven current by the convolution model is in a good agreement with the computed one by the numerical model. The raio of the difference between observed residual current (Vr) and predicted wind-driven current (Vc) to a residual current, that is, (Vr-Vc)/Vr shows 56%, 62% at 2 moorings in the Sachon Bay.

  • PDF