• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.03 seconds

Prediction of Larix kaempferi Stand Growth in Gangwon, Korea, Using Machine Learning Algorithms

  • Hyo-Bin Ji;Jin-Woo Park;Jung-Kee Choi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, we sought to compare and evaluate the accuracy and predictive performance of machine learning algorithms for estimating the growth of individual Larix kaempferi trees in Gangwon Province, Korea. We employed linear regression, random forest, XGBoost, and LightGBM algorithms to predict tree growth using monitoring data organized based on different thinning intensities. Furthermore, we compared and evaluated the goodness-of-fit of these models using metrics such as the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). The results revealed that XGBoost provided the highest goodness-of-fit, with an R2 value of 0.62 across all thinning intensities, while also yielding the lowest values for MAE and RMSE, thereby indicating the best model fit. When predicting the growth volume of individual trees after 3 years using the XGBoost model, the agreement was exceptionally high, reaching approximately 97% for all stand sites in accordance with the different thinning intensities. Notably, in non-thinned plots, the predicted volumes were approximately 2.1 m3 lower than the actual volumes; however, the agreement remained highly accurate at approximately 99.5%. These findings will contribute to the development of growth prediction models for individual trees using machine learning algorithms.

In-situ stresses ring hole measurement of concrete optimized based on finite element and GBDT algorithm

  • Chen Guo;Zheng Yang;Yanchao Yue;Wenxiao Li;Hantao Wu
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.477-487
    • /
    • 2024
  • The in-situ stresses of concrete are an essential index for assessing the safety performance of concrete structures. Conventional methods for pore pressure release often face challenges in selecting drilling ring parameters, uncontrollable stress release, and unstable detection accuracy. In this paper, the parameters affecting the results of the concrete ring hole stress release method are cross-combined, and finite elements are used to simulate the combined parameters and extract the stress release values to establish a training set. The GridSearchCV function is utilized to determine the optimal hyperparameters. The mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) are used as evaluation indexes to train the gradient boosting decision tree (GBDT) algorithm, and the other three common algorithms are compared. The RMSE of the GBDT algorithm for the test set is 4.499, and the R2 of the GBDT algorithm for the test set is 0.962, which is 9.66% higher than the R2 of the best-performing comparison algorithm. The model generated by the GBDT algorithm can accurately calculate the concrete in-situ stresses based on the drilling ring parameters and the corresponding stress release values and has a high accuracy and generalization ability.

PRICE ESTIMATION VIA BAYESIAN FILTERING AND OPTIMAL BID-ASK PRICES FOR MARKET MAKERS

  • Hyungbin Park;Junsu Park
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.875-898
    • /
    • 2024
  • This study estimates the true price of an asset and finds the optimal bid/ask prices for market makers. We provide a novel state-space model based on the exponential Ornstein-Uhlenbeck volatility and the Heston models with Gaussian noise, where the traded price and volume are available, but the true price is not observable. An objective of this study is to use Bayesian filtering to estimate the posterior distribution of the true price, given the traded price and volume. Because the posterior density is intractable, we employ the guided particle filtering algorithm, with which adaptive rejection metropolis sampling is used to generate samples from the density function of an unknown distribution. Given a simulated sample path, the posterior expectation of the true price outperforms the traded price in estimating the true price in terms of both the mean absolute error and root-mean-square error metrics. Another objective is to determine the optimal bid/ask prices for a market maker. The profit-and-loss of the market maker is the difference between the true price and its bid/ask prices multiplied by the traded volume or bid/ask size of the market maker. The market maker maximizes the expected utility of the PnL under the posterior distribution. We numerically calculate the optimal bid/ask prices using the Monte Carlo method, finding that its spread widens as the market maker becomes more risk-averse, and the bid/ask size and the level of uncertainty increase.

Sensitivity Analysis of the CBS Ku-Band Antenna due to Manufacturing/Alignment Errors (CBS Ku대역 안테나의 제작/정렬 오차 민감도 해석)

  • 한재흥;윤소현;엄만석;박종흥;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.168-177
    • /
    • 2003
  • The performance sensitivity analysis due to manufacturing/alignment errors is performed for the Ku-band offset parabola antenna of the domestic Communications and Broadcasting Satellite. The performance variations due to reflector random surface error, which inevitably happens during reflector manufacturing, are statistically analyzed using RMS error and correlation interval. The impact on the antenna performance of the fred hem's position and angular errors is investigated, and the sensitive directions are identified. When the target tolerances are applied, the performance degradations are found to be within the loss budget or corresponding performance margins.

A Study on the Precise Surveying Technique by Terrestrial Photogrammetry (지상사진측량(地上寫眞測量)에 의한 정밀측량기법(精密測量技法)의 연구(硏究))

  • Kang, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.91-98
    • /
    • 1989
  • The analysis of a single stereo model is not sufficient in applying for some large structures, therefore the precise coordinate analysis photogrammetric block adjustment method should be considered. The distribution of control points has a great influence on the error characteristics of the block adjustment results. Thus, the unit model method is applied to the photogrammentric adjustment procedure to study error characterestics with different distributions of control points. Through this study, the second order polynomial equations about bridging distance and plane error are developed in block adjustment of terrestrial photogrammetry. Comparing the block adjustment method and a single model method, root mean square error of the block adjustment method is 0.44mm, and a single model method is 1.06mm.

  • PDF

Improved block-wise MET for estimating vibration fields from the sensor

  • Jung, Byung Kyoo;Jeong, Weui Bong;Cho, Jinrae
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • Modal expansion technique (MET) is a method to estimate the vibration fields of flexible structures by using eigenmodes of the structure and the signals of sensors. It is the useful method to estimate the vibration fields but has the truncation error since it only uses the limit number of the eigenmodes in the frequency of interest. Even though block-wise MET performed frequency block by block with different valid eigenmodes was developed, it still has the truncation error due to the absence of other eigenmodes. Thus, this paper suggested an improved block-wise modal expansion technique. The technique recovers the truncation errors in one frequency block by utilizing other eigenmodes existed in the other frequency blocks. It was applied for estimating the vibration fields of a cylindrical shell. The estimated results were compared to the vibration fields of the forced vibration analysis by using two indices: the root mean square error and parallelism between two vectors. These indices showed that the estimated vibration fields of the improved block-wise MET more accurately than those of the established METs. Especially, this method was outstanding for frequencies near the natural frequency of the highest eigenmode of each block. In other words, the suggested technique can estimate vibration fields more accurately by recovering the truncation errors of the established METs.

PREDICTION OF DIAMETRAL CREEP FOR PRESSURE TUBES OF A PRESSURIZED HEAVY WATER REACTOR USING DATA BASED MODELING

  • Lee, Jae-Yong;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.355-362
    • /
    • 2012
  • The aim of this study was to develop a bundle position-wise linear model (BPLM) to predict Pressure Tube (PT) diametral creep employing the previously measured PT diameters and operating conditions. There are twelve bundles in a fuel channel, and for each bundle a linear model was developed by using the dependent variables, such as the fast neutron fluences and the bundle coolant temperatures. The training data set was selected using the subtractive clustering method. The data of 39 channels that consist of 80 percent of a total of 49 measured channels from Units 2, 3, and 4 of the Wolsung nuclear plant in Korea were used to develop the BPLM. The data from the remaining 10 channels were used to test the developed BPLM. The BPLM was optimized by the maximum likelihood estimation method. The developed BPLM to predict PT diametral creep was verified using the operating data gathered from Units 2, 3, and 4. Two error components for the BPLM, which are the epistemic error and the aleatory error, were generated. The diametral creep prediction and two error components will be used for the generation of the regional overpower trip setpoint at the corresponding effective full power days. The root mean square (RMS) errors were also generated and compared to those from the current prediction method. The RMS errors were found to be less than the previous errors.

Prediction Performance of Ocean Temperature and Salinity in Global Seasonal Forecast System Version 5 (GloSea5) on ARGO Float Data

  • Jieun Wie;Jae-Young Byon;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.327-337
    • /
    • 2024
  • The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.

Evaluation of SWAT Model Applicability for Runoff Estimation in Nam River Dam Watershed (남강댐 상류 소유역의 유출량 추정을 위한 SWAT 모형의 적용성 평가)

  • Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.9-19
    • /
    • 2016
  • The objective of this study was to evaluate the applicability of SWAT (Soil and Water Assessment Tool) model for runoff estimation in the Nam river dam watershed. Input data for the SWAT model were established using spatial data (land use, soil, digital elevation map) and weather data. The SWAT model was calibrated and validated using observed runoff data from 2003 to 2014 for three stations (Sancheong, Shinan, Changchon) within the study watershed. The $R^2$ (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. Parameters for runoff calibration were selected based on user's manual and references and trial and error method was applied for parameter calibration. Calibration results showed that annual mean runoff were within ${\pm}5%$ error compared to observed. $R^2$ were ranged 0.64 ~ 0.75, RMSE were 2.51 ~ 4.97 mm/day, NSE were 0.48 ~ 0.65, and RMAE were 0.34 ~ 0.63 mm/day for daily runoff, respectively. The runoff comparison for three stations showed that annual runoff was higher in Changchon especially summer and winter seasons. The flow exceedance graph showed that Sancheong and Shinan stations were similar while Changchon was higher in entire fraction.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.