• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.026 seconds

New approach to calculate Weibull parameters and comparison of wind potential of five cities of Pakistan

  • Ahmed Ali Rajput;Muhammad Daniyal;Muhammad Mustaqeem Zahid;Hasan Nafees;Misha Shafi;Zaheer Uddin
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.95-110
    • /
    • 2022
  • Wind energy can be utilized for the generation of electricity, due to significant wind potential at different parts of the world, some countries have already been generating of electricity through wind. Pakistan is still well behind and has not yet made any appreciable effort for the same. The objective of this work was to add some new strategies to calculate Weibull parameters and assess wind energy potential. A new approach calculates Weibull parameters; we also developed an alternate formula to calculate shape parameters instead of the gamma function. We obtained k (shape parameter) and c (scale parameter) for two-parameter Weibull distribution using five statistical methods for five different cities in Pakistan. Maximum likelihood method, Modified Maximum likelihood Method, Method of Moment, Energy Pattern Method, Empirical Method, and have been to calculate and differentiate the values of (shape parameter) k and (scale parameter) c. The performance of these five methods is estimated using the Goodness-of-Fit Test, including root mean square error, mean absolute bias error, mean absolute percentage error, and chi-square error. The daily 10-minute average values of wind speed data (obtained from energydata.info) of different cities of Pakistan for the year 2016 are used to estimate the Weibull parameters. The study finds that Hyderabad city has the largest wind potential than Karachi, Quetta, Lahore, and Peshawar. Hyderabad and Karachi are two possible sites where wind turbines can produce reasonable electricity.

Optimization of Neural Network Structure for the Efficient Bushing Model (효율적인 신경망 부싱모델을 위한 신경망 구성 최적화)

  • Lee, Seung-Kyu;Kim, Kwang-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.

Incremental Regression based on a Sliding Window for Stream Data Prediction (스트림 데이타 예측을 위한 슬라이딩 윈도우 기반 점진적 회귀분석)

  • Kim, Sung-Hyun;Jin, Long;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.483-492
    • /
    • 2007
  • Time series of conventional prediction techniques uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to stream data, the rate of prediction accuracy will be decreased. This paper proposes an stream data prediction technique using sliding window and regression. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of stream data prediction experiment are performed by the proposed technique IMQR(Incremental Multiple Quadratic Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

Comparison of Regression Models for Estimating Ventilation Rate of Mechanically Ventilated Swine Farm (강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교)

  • Jo, Gwanggon;Ha, Taehwan;Yoon, Sanghoo;Jang, Yuna;Jung, Minwoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.

Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles

  • Alzabeebee, Saif;Zuhaira, Ali Adel;Al-Hamd, Rwayda Kh. S.
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.397-404
    • /
    • 2022
  • Accurate prediction of the undrained shaft resistance is essential for robust design of bored piles in undrained condition. The undrained shaft resistance is calculated using the undrained adhesion factor multiplied by the undrained cohesion of the soil. However, the available correlations to predict the undrained adhesion factor have been developed using simple regression techniques and the accuracy of these correlations has not been thoroughly assessed in previous studies. The lack of the assessment of these correlations made it difficult for geotechnical engineers to select the most accurate correlation in routine designs. Furthermore, limited attempts have been made in previous studies to use advanced data mining techniques to develop simple and accurate correlation to predict the undrained adhesion factor. This research, therefore, has been conducted to fill these gaps in knowledge by developing novel and robust correlation to predict the undrained adhesion factor. The development of the new correlation has been conducted using the multi-objective evolutionary polynomial regression analysis. The new correlation outperformed the available empirical correlations, where the new correlation scored lower mean absolute error, mean square error, root mean square error and standard deviation of measured to predicted adhesion factor, and higher mean, a20-index and coefficient of correlation. The correlation also successfully showed the influence of the undrained cohesion and the effective stress on the adhesion factor. Hence, the new correlation enhances the design accuracy and can be used by practitioner geotechnical engineers to ensure optimized designs of bored piles in undrained conditions.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Site - Specific Frost Warning Based on Topoclimatic Estimation of Daily Minimum Temperature (지형기후모형에 근거한 서리경보시스템 구축)

  • Chung Uran;Seo Hee Cheol;Yun Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.164-169
    • /
    • 2004
  • A spatial interpolation scheme incorporating local geographic potential for cold air accumulation (TOPSIM) was used to test the feasibility of operational frost warning in Chatancheon basin in Yeoncheon County, where the introduction of new crops including temperate zone fruits is planned. Air temperature from April to June 2003 was measured at one-minute intervals at four locations within the basin. Cold-air accumulation potentials (CAP) at 4 sites were calculated for 3 different catchment scales: a rectangular area of 65 x 55 km which covers the whole county, the KOWACO (Korea Water Corporation) hydrologic unit which includes all 4 sites, and the sub-basins delineated by a stream network analysis of the digital elevation model. Daily minimum temperatures at 4 sites were calculated by interpolating the perfect prognosis (i.e., synoptic observations at KMA Dongducheon station) based on TOPSIM with 3 different CAPs. Mean error, mean absolute error, and root mean square error were calculated for 45 days with no precipitation to test the model performance. For the 3 flat locations, little difference was detected in model performance among 3 catchment areas, but the best performance was found with the CAPs calculated for sub-basins at one site (Oksan) on complex terrain. When TOPSIM loaded with sub-basin CAPs was applied to Oksan to predict frost events during the fruit flowering period in 2004, the goodness of fit was sufficient for making an operational frost warning system for mountainous areas.

Exploiting Neural Network for Temporal Multi-variate Air Quality and Pollutant Prediction

  • Khan, Muneeb A.;Kim, Hyun-chul;Park, Heemin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.440-449
    • /
    • 2022
  • In recent years, the air pollution and Air Quality Index (AQI) has been a pivotal point for researchers due to its effect on human health. Various research has been done in predicting the AQI but most of these studies, either lack dense temporal data or cover one or two air pollutant elements. In this paper, a hybrid Convolutional Neural approach integrated with recurrent neural network architecture (CNN-LSTM), is presented to find air pollution inference using a multivariate air pollutant elements dataset. The aim of this research is to design a robust and real-time air pollutant forecasting system by exploiting a neural network. The proposed approach is implemented on a 24-month dataset from Seoul, Republic of Korea. The predicted results are cross-validated with the real dataset and compared with the state-of-the-art techniques to evaluate its robustness and performance. The proposed model outperforms SVM, SVM-Polynomial, ANN, and RF models with 60.17%, 68.99%, 14.6%, and 6.29%, respectively. The model performs SVM and SVM-Polynomial in predicting O3 by 78.04% and 83.79%, respectively. Overall performance of the model is measured in terms of Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE).

Feasibility study of using triple-energy CT images for improving stopping power estimation

  • Yejin Kim;Jin Sung Kim ;Seungryong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1342-1349
    • /
    • 2023
  • The planning accuracy of charged particle therapy (CPT) is subject to the accuracy of stopping power (SP) estimation. In this study, we propose a method of deriving a pseudo-triple-energy CT (pTECT) that can be achievable in the existing dual-energy CT (DECT) systems for better SP estimation. In order to remove the direct effect of errors in CT values, relative CT values according to three scanning voltage settings were used. CT values of each tissue substitute phantom were measured to show the non-linearity of the values thereby suggesting the absolute difference and ratio of CT values as parameters for SP estimation. Electron density, effective atomic number (EAN), mean excitation energy and SP were calculated based on these parameters. Two of conventional methods were implemented and compared to the proposed pTECT method in terms of residuals, absolute error and root-mean-square-error (RMSE). The proposed method outperformed the comparison methods in every evaluation metrics. Especially, the estimation error for EAN and mean excitation using pTECT were converging to zero. In this proof-of-concept study, we showed the feasibility of using three CT values for accurate SP estimation. Our suggested pTECT method indicates potential clinical utility of spectral CT imaging for CPT planning.

Designing of the Beheshtabad water transmission tunnel based on the hybrid empirical method

  • Mohammad Rezaei;Hazhar Habibi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.621-633
    • /
    • 2023
  • Stability analysis and support system estimation of the Beheshtabad water transmission tunnel is investigated in this research. A combination approach based on the rock mass rating (RMR) and rock mass quality index (Q) is used for this purpose. In the first step, 40 datasets related to the petrological, structural, hydrological, physical, and mechanical properties of tunnel host rocks are measured in the field and laboratory. Then, RMR, Q, and height of influenced zone above the tunnel roof are computed and sorted into five general groups to analyze the tunnel stability and determine its support system. Accordingly, tunnel stand-up time, rock load, and required support system are estimated for five sorted rock groups. In addition, various empirical relations between RMR and Q i.e., linear, exponential, logarithmic, and power functions are developed using the analysis of variance (ANOVA). Based on the significance level (sig.), determination coefficient (R2) and Fisher-test (F) indices, power and logarithmic equations are proposed as the optimum relations between RMR and Q. To validate the proposed relations, their results are compared with the results of previous similar equations by using the variance account for (VAF), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE) indices. Comparison results showed that the accuracy of proposed RMR-Q relations is better than the previous similar relations and their outputs are more consistent with actual data. Therefore, they can be practically utilized in designing the tunneling projects with an acceptable level of accuracy and reliability.