• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.03 seconds

A New Approach to the Parameter Calibration of Two-Fluid Model (Two-Fluid 모형 파라미터 정산의 새로운 접근방안)

  • Kwon, Yeong-Beom;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • The two-fluid model proposed by Herman and Prigogine is useful for analyzing macroscopic traffic flow in a network. The two-fluid model is used for analyzing a network through the relationship between the ratio of stopped vehicles and the average moving speed of the network, and the two-fluid model has also been applied in the urban transportation network where many signalized or unsignalized intersections existed. In general, the average travel speed and moving speed of a network decrease, and the ratio of stopped vehicles and low speed vehicles in network increase as the traffic demand increases. This study proposed the two-fluid model considering congested and uncongested traffic situations. The critical velocity and the weight factor for congested situation are calibrated by minimizing the root mean square error (RMSE). The critical speed of the Seoul network was about 34 kph, and the weight factor of the congestion on the network was about 0.61. In the proposed model, $R^2$ increased from 0.78 to 0.99 when compared to the existing model, suggesting that the proposed model can be applied in evaluating network performances or traffic signal operations.

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

Mathematical Models to Describe the Kinetic Behavior of Staphylococcus aureus in Jerky

  • Ha, Jimyeong;Lee, Jeeyeon;Lee, Soomin;Kim, Sejeong;Choi, Yukyung;Oh, Hyemin;Kim, Yujin;Lee, Yewon;Seo, Yeongeun;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • The objective of this study was to develop mathematical models for describing the kinetic behavior of Staphylococcus aureus (S. aureus) in seasoned beef jerky. Seasoned beef jerky was cut into 10-g pieces. Next, 0.1 mL of S. aureus ATCC13565 was inoculated into the samples to obtain 3 Log CFU/g, and the samples were stored aerobically at $10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$ for 600 h. S. aureus cell counts were enumerated on Baird Parker agar during storage. To develop a primary model, the Weibull model was fitted to the cell count data to calculate Delta (required time for the first decimal reduction) and ${\rho}$ (shape of curves). For secondary modeling, a polynomial model was fitted to the Delta values as a function of storage temperature. To evaluate the accuracy of the model prediction, the root mean square error (RMSE) was calculated by comparing the predicted data with the observed data. The surviving S. aureus cell counts were decreased at all storage temperatures. The Delta values were longer at $10^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$ than at $30^{\circ}C$ and $35^{\circ}C$. The secondary model well-described the temperature effect on Delta with an $R^2$ value of 0.920. In validation analysis, RMSE values of 0.325 suggested that the model performance was appropriate. S. aureus in beef jerky survives for a long period at low storage temperatures and that the model developed in this study is useful for describing the kinetic behavior of S. aureus in seasoned beef jerky.

Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest (온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석)

  • Han, Sang Hak;Yun, Chung Weon;Lee, Sanghun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.361-370
    • /
    • 2020
  • Long-term observation of the life cycle of plants allows the identification of critical signals of the effects of climate change on plants. Indeed, plant phenology is the simplest approach to detect climate change. Observation of seasonal changes in plants using digital repeat imaging helps in overcoming the limitations of both traditional methods and satellite remote sensing. In this study, we demonstrate the utility of camera-based repeat digital imaging in this context. We observed the biological events of plants and quantified their phenophases in the northern temperate type deciduous broadleaf forest of Jeombong Mountain. This study aimed to identify trends in seasonal characteristics of Quercus mongolica (deciduous broadleaf forest) and Pinus densiflora (evergreen coniferous forest). The vegetation index, green chromatic coordinate (GCC), was calculated from the RGB channel image data. The magnitude of the GCC amplitude was smaller in the evergreen coniferous forest than in the deciduous forest. The slope of the GCC (increased in spring and decreased in autumn) was moderate in the evergreen coniferous forest compared with that in the deciduous forest. In the pine forest, the beginning of growth occurred earlier than that in the red oak forest, whereas the end of growth was later. Verification of the accuracy of the phenophases showed high accuracy with root-mean-square error (RMSE) values of 0.008 (region of interest [ROI]1) and 0.006 (ROI3). These results reflect the tendency of the GCC trajectory in a northern temperate type deciduous broadleaf forest. Based on the results, we propose that repeat imaging using digital cameras will be useful for the observation of phenophases.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis

  • Joshi, Rahul;Joshi, Ritu;Amanah, Hanim Zuhrotul;Faqeerzada, Mohammad Akbar;Jayapal, Praveen Kumar;Kim, Geonwoo;Baek, Insuck;Park, Eun-Sung;Masithoh, Rudiati Evi;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.299-310
    • /
    • 2021
  • Glycerol is a non-volatile compound with no aromatic properties that contributes significantly to the quality of wine by providing sweetness and richness of taste. In addition, it is also the third most significant byproduct of alcoholic fermentation in terms of quantity after ethanol and carbon dioxide. In this study, Fourier transform infrared (FT-IR) spectroscopy was employed as a fast non-destructive method in conjugation with multivariate regression analysis to build a model for the quantitative analysis of glycerol concentration in wine samples. The samples were prepared by using three varieties of red wine samples (i.e., Shiraz, Merlot, and Barbaresco) that were adulterated with glycerol in concentration ranges from 0.1 to 15% (v·v-1), and subjected to analysis together with pure wine samples. A net analyte signal (NAS)-based methodology, called hybrid linear analysis in the literature (HLA/GO), was applied for predicting glycerol concentrations in the collected FT-IR spectral data. Calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results exhibited a high coefficient of determination (R2) of 0.987 and a low root mean square error (RMSE) of 0.563% for the calibration set, and a R2 of 0.984 and a RMSE of 0.626% for the validation set. Further, the model was validated in terms of sensitivity, selectivity, and limits of detection and quantification, and the results confirmed that this model can be used in most applications, as well as for quality assurance.

Development of Measuring Tool for Health Promotion Behavior of Nurses (간호사의 건강증진행위 측정도구 개발)

  • Kim, Min-young;Choi, Soon-Ok;Kim, Eun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.138-147
    • /
    • 2021
  • The purpose of this study was to develop a measuring tool for the health promotion behavior of Korean nurses. This would address the lack of a proven tool that reflects the nature of the nurses' nursing environment. This study was conducted on 530 nurses from January to December 2019. A literature review and focus group interview were conducted, data analysis was carried out to measure validity and reliability, and the conceptual framework was constructed by applying the IMB model. Five factors namely self-concept (2 questions), hospital life management (4 questions), knowledge and information regarding health (5 questions), physical and mental stress management (3 questions), and work adaptation (2 questions) were framed into 16 questions. The model fit was 346.23 (��<.001), Parsimonious Normed Fit Index (PNFI) was 0.60, and Parsimonious Comparative Fit Index (PCFI) was 0.63, which met the acceptance criteria, and the Root Mean Square Error of Approximation (RMSEA) was 0.10. Goodness of Fit Index (GFI) was 0.88, Comparative Fit Index (CFI) was 0.85, and Incremental Fit Index (IFI) was 0.85 which were found to be acceptable as per the applicable standards. All items had a Cronbach's �� score of .85, which ensured stable reliability. The nurse's health promotion behavior measurement tool developed in this study will be used to measure the nurse's health promotion behavior in terms of nursing practice which will help in understanding the broad contours of this behavior.

Height Determination Using Vanishing Points of a Single Camera for Monitoring of Construction Site (건설현장 모니터링을 위한 단안 카메라 기반의 소실점을 이용한 높이 결정)

  • Choi, In-Ha;So, Hyeong-Yoon;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2021
  • According to the government's announcement of the safety management enhancement policy for small and medium-sized private construction sites, the subject of mandatory CCTV installation has been expanded from large construction sites to small and medium-sized construction sites. However, since the existing CCTV at construction sites has been used for simple control for safety management, so research is needed for monitoring of construction sites. Therefore, in this study, three vanishing points were calculated based on a single image taken with a monocular camera, and then a camera matrix containing interior orientation parameters information was determined. And the accuracy was verified by calculating the height of the target object from the height of the reference object. Through height determination experiments using vanishing points based on a monocular camera, it was possible to determine the height of target objects only with a single image without separately surveying of ground control points. As a result of the accuracy evaluation, the root mean square error was ±0.161m. Therefore, it is determined that the progress of construction work at the construction sites can be monitored through the single image taken using the single camera.

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea (PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구)

  • Kim, Young-Hyun;Choi, Myeong-Ju;Shim, Kyo-Moon;Hur, Jina;Jo, Sera;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.577-592
    • /
    • 2021
  • This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.