• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.029 seconds

The Selection of Optimal Distributions for Distributed Hydrological Models using Multi-criteria Calibration Techniques (다중최적화기법을 이용한 분포형 수문모형의 최적 분포형 선택)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.

The Verification of a Numerical Simulation of Urban area Flow and Thermal Environment Using Computational Fluid Dynamics Model (전산 유체 역학 모델을 이용한 도시지역 흐름 및 열 환경 수치모의 검증)

  • Kim, Do-Hyoung;Kim, Geun-Hoi;Byon, Jae-Young;Kim, Baek-Jo;Kim, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.522-534
    • /
    • 2017
  • The purpose of this study is to verify urban flow and thermal environment by using the simulated Computational Fluid Dynamics (CFD) model in the area of Gangnam Seonjeongneung, and then to compare the CFD model simulation results with that of Seonjeongneung-monitoring networks observation data. The CFD model is developed through the collaborative research project between National Institute of Meteorological Sciences and Seoul National University (CFD_NIMR_SNU). The CFD_NIMR_SNU model is simulated using Korea Meteorological Administration (KMA) Local Data Assimilation Prediction System (LDAPS) wind and potential temperature as initial and boundary conditions from August 4-6, 2015, and that is improved to consider vegetation effect and surface temperature. It is noticed that the Root Mean Square Error (RMSE) of wind speed decreases from 1.06 to $0.62m\;s^{-1}$ by vegetation effect over the Seonjeongneung area. Although the wind speed is overestimated, RMSE of wind speed decreased in the CFD_NIMR_SNU than LDAPS. The temperature forecast tends to underestimate in the LDAPS, while it is improved by CFD_NIMR_SNU. This study shows that the CFD model can provide detailed and accurate thermal and urban area flow information over the complex urban region. It will contribute to analyze urban environment and planning.

A Study on Analyzing the Validity between the Predicted and Measured Concentrations of VOCs in the Atmosphere Using the CalTOX Model (CalTOX 모델에 의한 휘발성유기화합물의 대기 중 예측 농도와 실측 농도간의 타당성 분석에 관한 연구)

  • Kim, Ok;Lee, Minwoo;Park, Sanghyun;Park, Changyoung;Song, Youngho;Kim, Byeongbin;Choi, Jinha;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.576-587
    • /
    • 2020
  • Objectives: This study calculated local residents exposures to VOCs (Volatile Organic Compounds) released into the atmosphere using the CalTOX model and carried out uncertainty analysis and sensitivity analysis. The model validity was analyzed by comparing the predicted and the actual atmospheric concentrations. Methods: Uncertainty was parsed by conducting a Monte Carlo simulation. Sensitivity was dissected with the regression (coefficients) method. The model validity was analyzed by applying r2 (coefficient of determination), RMSE (root mean square error), and the Nash-Sutcliffe EI (efficiency index) formula. Results: Among the concentrations in the atmosphere in this study, benzene was the highest and the lifetime average daily dose of benzene and the average daily dose of xylene were high. In terms of the sensitivity analysis outcome, the source term to air, exposure time, indoors resting (ETri), exposure time, outdoors at home (ETao), yearly average wind speed (v_w), contaminated area in ㎡ (Area), active breathing rate (BRa), resting breathing rate (BRr), exposure time, and active indoors (ETai) were elicited as input variables having great influence upon this model. In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. To supplement this value, the regression formula was derived for benzene with y=0.002+15.48x, ethylbenzene with y ≡ 0.001+57.240x, styrene with y=0.000+42.249x, toluene with y=0.004+91.588x, and xylene with y=0.000+0.007x. Conclusions: In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. This will be able to be used as base data for securing the accuracy and reliability of the model.

Development of a Hydrograph Triggered by Earth-Dam-Break for Compiling a Flood Hazard Map (홍수위험지도 작성을 위한 댐 붕괴 지점에서의 유량곡선 산정)

  • Lee, Khil-Ha;Kim, Sung-Wook;Yu, Soonyoung;Kim, Sang-Hyun;Cho, Jinwoo;Kim, Jin-Man
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.381-387
    • /
    • 2013
  • In compiling flood hazard maps for the case of dam-failure, a scenario-based numerical modeling approach is commonly used, involving the modeling of important parameters that capture peak discharge, such as breach formation and progress. In this study, an earth-dam-break model is constructed assuming an identical mechanism and hydraulic process for all dam-break processes. A focus of the analysis is estimation of the hydrograph at the outlet as a function of time. The constructed hydrograph then serves as an upper boundary condition in running the flood routing model downstream, although flood routing is not considered here. Validation was performed using the record of the Tangjishan dam-break in China. The results were satisfactory, with a coefficient of determination of 0.974, Nash-Sutcliffe Coefficient of Efficiency (NSC) of 0.94, and Root Mean Square Error (RMSE) of $610m^3/sec$. The proposed model will contribute to assessments of potential flood hazards caused by dam-break.

Models Describing Growth Characteristics of Holstein Dairy Cows Raised in Korea

  • Vijayakumar, Mayakrishnan;Choy, Yun-Ho;Kim, Tae-Il;Lim, Dong-Hyun;Park, Seong-Min;Alam, Mahboob;Choi, Hee-Chul;Ki, Kwang-Seok;Lee, Hyun-Jeong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.167-176
    • /
    • 2020
  • The objective of the present study was to determine the best model to describe and quantify the changes in live body weight, height at withers, height at rump, body length and chest girth of Holstein cows raised under Korean feeding conditions for 50 months. The five standard growth models namely polynomial linear regression models, regression of growth variables on the first and second-order of ages in days (model 1) and regression of growth variables on age covariates from first to the third-order (model 2) as well as non-linear models were fitted and evaluated for representing growth pattern of Holstein cows raised in Korean feeding circumstances. Nonlinear models fitted were three exponential growth curve models; Brody, Gompertz, and von Bertalanffy functional models. For this purpose, a total of 22 Holstein cows raised in Korea used in the period from April 2016 to May 2020. Each model fitted to monthly growth curve records of dairy cows by using PROC NLIN procedure in SAS program. On the basis of the results, nonlinear models showed the lower root mean square of error (RMSE) for live body weight, height at withers, height at rump, body length and chest girth (12.22, 1.95, 1.55, 4.04, 2.06) with higher correlation coefficiency (R2) values for live body weight, height at withers, height at rump, body length and chest girth (0.99, 0.99, 0.99, 1.00, 1.00). Overall, the evaluation of the different growth models indicated that the Gompertz model used in the study seemed to be the most appropriate one for standard growth of Holstein cows raised under Korean feeding system.

Nondestructive Estimation of Lean Meat Yield of South Korean Pig Carcasses Using Machine Vision Technique

  • Lohumi, Santosh;Wakholi, Collins;Baek, Jong Ho;Kim, Byeoung Do;Kang, Se Joo;Kim, Hak Sung;Yun, Yeong Kwon;Lee, Wang Yeol;Yoon, Sung Ho;Cho, Byoung-Kwan
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1109-1119
    • /
    • 2018
  • In this paper, we report the development of a nondestructive prediction model for lean meat percentage (LMP) in Korean pig carcasses and in the major cuts using a machine vision technique. A popular vision system in the meat industry, the VCS2000 was installed in a modern Korean slaughterhouse, and the images of half carcasses were captured using three cameras from 175 selected pork carcasses (86 castrated males and 89 females). The imaged carcasses were divided into calibration (n=135) and validation (n=39) sets and a multilinear regression (MLR) analysis was utilized to develop the prediction equation from the calibration set. The efficiency of the prediction equation was then evaluated by an independent validation set. We found that the prediction equation - developed to estimate LMP in whole carcasses based on six variables - was characterized by a coefficient of determination ($R^2_v$) value of 0.77 (root-mean square error [RMSEV] of 2.12%). In addition, the predicted LMP values for the major cuts: ham, belly, and shoulder exhibited $R^2_v$ values${\geq}0.8$ (0.73 for loin parts) with low RMSEV values. However, lower accuracy ($R^2_v=0.67$) was achieved for tenderloin cuts. These results indicate that the LMP in Korean pig carcasses and major cuts can be predicted successfully using the VCS2000-based prediction equation developed here. The ultimate advantages of this technique are compatibility and speed, as the VCS2000 imaging system can be installed in any slaughterhouse with minor modifications to facilitate the on-line and real-time prediction of LMP in pig carcasses.

Performance Evaluation of Stealth Chamber as a Novel Reference Chamber for Measuring Percentage Depth Dose and Profile of VitalBeam Linear Accelerator (VitalBeam 선형가속기의 심부선량백분율과 측방선량분포 측정을 위한 새로운 기준 전리함으로서 스텔스 전리함의 성능 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Kang, Seong-Hee;Kang, Sang-Won;Kim, Kyeong-Hyeon;Jung, Jae-Yong;Shin, Young-Joo;Suh, Tae-Suk;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.201-207
    • /
    • 2018
  • The purpose of this study is to evaluate the performance of a "stealth chamber" as a novel reference chamber for measuring percentage depth dose (PDD) and profile of 6, 8 and 10 MV photon energies. The PDD curves and dose profiles with fields ranging from $3{\times}3$ to $25{\times}25cm^2$ were acquired from measurements by using the stealth chamber and CC 13 chamber as reference chamber. All measurements were performed with Varian VitalBeam linear accelerator. In order to assess the performance of stealth chamber, PDD curves and profiles measured with stealth chamber were compared with measurement data using CC13 chamber. For PPDs measured with both chambers, the dosimetric parameters such as $d_{max}$ (depth of maximum dose), $D_{50}$ (PDD at 50 mm depth), and $D_{100}$ (PDD at 100 mm depth) were analyzed. Moreover, root mean square error (RMSE) values for profiles at $d_{max}$ and 100 mm depth were evaluated. The measured PDDs and profiles between the stealth chamber and CC13 chamber as reference detector had almost comparable. For PDDs, the evaluated dosimetric parameters were observed small difference (<1%) for all energies and field sizes, except for $d_{max}$ less than 2 mm. In addition, the difference of RMSEs for profiles at $d_{max}$ and 100 mm depth was similar for both chambers. This study confirmed that the use of stealth chamber for measuring commission beam data is a feasible as reference chamber for fields ranging from $3{\times}3$ to $20{\times}20cm^2$. Furthermore, it has an advantage with respect to measurement of the small fields (less than $3{\times}3cm^2$ field) although not performed in this study.

A study on the applicability of power usage method for the analysis of river water intake (하천수 취수량 분석을 위한 전력량법의 적용성 연구)

  • Baek, Jongseok;Kim, Chiyoung;Cha, JunHo;Song, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.975-984
    • /
    • 2019
  • As an essential prerequisite for systematic and integrated management of river water, it is necessary to secure the basic data such as discharge supplied to the river and released from the river. Under the current permit system for river water use, 59.1% of licensed facilities were found to have no discharge meters in 2017, especially for agricultural water, which makes it difficult to secure reliable data as a large portion of the reports are voluntarily reported by users. In this study, the indirect discharge measurement method of calculating the discharge through the power usage of the pumping station was applied to secure reliable discharge data. In particular, focusing on the fact that the discharge calculated by the power usage method differed with the actual discharge according to the level of the river, the study was conducted on improving the power usage method reflecting the river water level and improving the accuracy of discharge data. Analysis of the discharge calculated using the power usage method considering river water level using the correlation analysis method such as regression analysis, percent difference, root mean square error etc. confirmed that the results are not high compared to the conventional power usage method, but are slightly more approximated to the actual discharge. Therefore, although reliable discharge data can be obtained from the existing power usage method, it is expected that more accurate data on intaking water of river water can be obtained if the improved power usage method is used at points where the variation in the water level of the river is large.

APPLICATION STUDY OF CHEMOINFOMETRICAL NEAR-INFRARED SPECTROSCOPY IN PHARMACEUTICAL INDUSTRY

  • Otsuka, Makoto;Kato, Fumie;Matsuda, Yoshihisa
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.2111-2111
    • /
    • 2001
  • A chemoinfometrical method for evaluating the quantitative determination of crystallinity one polymorphs based on fourie-transformed near-infrared (FT-NIR) spectroscopy was established. A direct comparison of the data with the ones collected from using the and compared with the conventional powder X-ray diffraction method was performed. [Method] The pPure a and g forms of indomethacin (IMC) were prepared by reportedusing published methods. Six kinds of standard samples obtained by physically mixing of a and g forms. After the powder X-ray diffraction profiles of samples have been measured, the intensity values were normalized to against the intensity of silicon powder as the as an external standard. The calibration curves for quantification of crystal content were based upon the total relative intensity of four diffraction peaks from of the form g crystal. FT-NIR spectra of six calibration sample sets were recorded 5 times with the NIR spectrometer (BRAN+LUEBBE). Chemoinfometric analysis was performed on the NIR spectral data sets by applying the principal component regression (PCR). [Results] The relation between the actual and predicted polymorphic contents of form g IMC measured using by the X-ray diffraction method shows a good straight linen linear relation., and it has slope of 0.023, an intercept of 0.131 and a correlation coefficient of 0.986. PCR analyses wereis was performed based on normalized NIR spectra sets offer standard samples of known content of IMC g form. IMC. A calibration equation was determined to minimize the root mean square error of the predictionthe prediction. Figure 1 shows a plot of the calibration data obtained by NIR method between the actual and predicted contents of form g IMC. The predicted values were reproducible and had a smaller standard deviation. Figure 2 shows that the plot for the predicted transformation rate (%) of form a IMC to form g as measured by X-ray diffractomeoy against to those as measured by NIR method. The plot has a slope of 1.296, an intercept of 1,109, and a correlation coefficient of 0.992. The line represents a satisfactory correlation between the two predicted values of form g IMC content. Thus NIR spectroscopy is an effective method for the evaluation to the pharmaceutical products of quantitative of polymorph.

  • PDF

An Analysis of the Least Observing-Session Duration of GPS for the Retrieval of Precipitable Water Vapor (GPS 가강수량 산출을 위한 최소 관측세션 지속시간에 대한 분석)

  • Kim, Yoo-Jun;Han, Sang-Ok;Kim, Ki-Hoon;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.391-402
    • /
    • 2014
  • This study investigated the performances of precipitable water vapor (PWV) retrieval from the sets of ground global positioning system (GPS) signals, each of which had different length of observing-session duration, for the purpose of obtaining as short session duration as possible that is required at the least for appropriate retrieval of the PWV for meteorological usage. The shorter duration is highly desirable to make the most use of the GPS instrument on board the mobile observation vehicle making measurements place by place. First, using Bernese 5.0 software the PWV retrieval was conducted with the data sets of GPS signals archived continuously in 30 seconds interval during 2-month period of January and February, 2012 at Bukgangneung site. Each of the PWVs produced independently using different session durations was compared to that of radio-sonde launched at the same GPS location, a Bukgangneung site. Second, the same procedure was done using the data sets obtained from the mobile observation vehicle that was operating at Boseong area in Jeonnam province during Changma observation campaign in 2013, and the results were compared to that at Bukgangneung site. The results showed that as the observing-session duration increased the retrieval errors decreased with the dramatic change happening between 3 and 4 hours of the duration. On average, the root mean square error (RMSE) of the retrieved PWV was around 1 mm for the durations of greater than 4 hours. The results at both the Bukgangneung (fixed site) and Boseong (mobile vehicle) seemed to be fairly comparable with each other. From this study it is believed that at least 4 hours of observing-session duration is needed for the retrieval of PWV from the ground GPS for meteorological usage using Bernese 5.0 software.