• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.037 seconds

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

A Study on the Reproduction of 3-Dimensional Building Model from Single High Resolution Image without Meta Information (메타정보 없는 단일 고해상도 영상으로부터 3차원 건물 모델 생성에 관한 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2009
  • We expanded the 3D building information extraction method using shadow and vertical line from single high resolution image with meta information into the method for single high resolution image without meta information. Our method guesses an azimuth angle and an elevation angle of the sensor and the sun using reference building, selected by user, on an image. For test, we used an IKONOS image and an image extracted from the Google Earth. We calculated the Root Mean Square (RMS) error of heights extracted by our method using the building height extracted from stereo IKONOS image as reference, and the RMS error from the IKONOS image and the Google Earth image was under than 3 m. We also calculated the RMS error of horizontality position by comparison between building position extracted from only the IKONOS image and it from 1:1,000 digital map, and the result was under than 3 m. This test results showed that the height pattern of building models by our method was similar with it by the method using meta information.

  • PDF

Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific

  • Kim, Hee-Young;Park, Kyung-Ae;Chung, Sung-Rae;Baek, Seon-Kyun;Lee, Byung-Il;Shin, In-Chul;Chung, Chu-Yong;Kim, Jae-Gwan;Jung, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor(GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to $0.93^{\circ}C$ and $0.05^{\circ}C$, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above $30^{\circ}N$. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

Mathematical Models to Predict Staphylococcus aureus Growth on Processed Cheeses

  • Kim, Kyungmi;Lee, Heeyoung;Moon, Jinsan;Kim, Youngjo;Heo, Eunjeong;Park, Hyunjung;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.217-221
    • /
    • 2013
  • This study developed predictive models for the kinetic behavior of Staphylococcus aureus on processed cheeses. Mozzarella slice cheese and cheddar slice cheese were inoculated with 0.1 ml of a S. aureus strain mixture (ATCC13565, ATCC14458, ATCC23235, ATCC27664, and NCCP10826). The inoculated samples were then stored at $4^{\circ}C$ (1440 h), $15^{\circ}C$ (288 h), $25^{\circ}C$ (72 h), and $30^{\circ}C$ (48 h), and the growth of all bacteria and of S. aureus were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of S. aureus to calculate growth rate (${\mu}_{max}$; ${\log}CFU{\cdot}g^{-1}{\cdot}h^{-1}$), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The growth parameters were further analyzed using the square root model as a function of temperature. The model performance was validated with observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, S. aureus cell growth was not observed on either processed cheese, but S. aureus growth on the mozzarella and cheddar cheeses was observed at $15^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. The ${\mu}_{max}$ values increased, but LPD values decreased as storage temperature increased. In addition, the developed models showed acceptable performance (RMSE = 0.3500-0.5344). This result indicates that the developed kinetic model should be useful in describing the growth pattern of S. aureus in processed cheeses.

Development of a Predictive Model Describing the Growth of Staphylococcus aureus in Pyeonyuk marketed (시중 유통판매 중인 편육에서의 Staphylococcus aureus 성장예측모델 개발)

  • Kim, An-Na;Cho, Joon-Il;Son, Na-Ry;Choi, Won-Seok;Yoon, Sang-Hyun;Suh, Soo-Hwan;Kwak, Hyo-Sun;Joo, In-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.206-210
    • /
    • 2017
  • This study was performed to develope mathematical models for predicting growth kinetics of Staphylococcus aureus in the processed meat product, pyeonyuk. Growth patterns of S. aureus in pyeonyuk were determined at the storage temperatures of 4, 10, 20, and $37^{\circ}C$ respectively. The number of S. aureus in pyeonyuk increased at all the storage temperatures. The maximum specific growth rate (${\mu}_{max}$) and lag phase duration (LPD) values were calculated by Baranyi model. The ${\mu}_{max}$ values went up, while the LPD values decreased as the storage temperature increased from $4^{\circ}C$ to $37^{\circ}C$. Square root model and polynomial model were used to develop the secondary models for ${\mu}_{max}$ and LPD, respectively. Root Mean Square Error (RMSE) was used to evaluate the developed model and the fitness was determind to be 0.42. Therefore the developed predictive model was useful to predict the growth of S. aureus in pyeonyuk and it will help to prevent food-born disease by expanding for microbial sanitary management guide.

Evaluation of a Nutrition Model in Predicting Performance of Vietnamese Cattle

  • Parsons, David;Van, Nguyen Huu;Malau-Aduli, Aduli E.O.;Ba, Nguyen Xuan;Phung, Le Dinh;Lane, Peter A.;Ngoan, Le Duc;Tedeschi, Luis O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1237-1247
    • /
    • 2012
  • The objective of this study was to evaluate the predictions of dry matter intake (DMI) and average daily gain (ADG) of Vietnamese Yellow (Vang) purebred and crossbred (Vang with Red Sindhi or Brahman) bulls fed under Vietnamese conditions using two levels of solution (1 and 2) of the large ruminant nutrition system (LRNS) model. Animal information and feed chemical characterization were obtained from five studies. The initial mean body weight (BW) of the animals was 186, with standard deviation ${\pm}33.2$ kg. Animals were fed ad libitum commonly available feedstuffs, including cassava powder, corn grain, Napier grass, rice straw and bran, and minerals and vitamins, for 50 to 80 d. Adequacy of the predictions was assessed with the Model Evaluation System using the root of mean square error of prediction (RMSEP), accuracy (Cb), coefficient of determination ($r^2$), and mean bias (MB). When all treatment means were used, both levels of solution predicted DMI similarly with low precision ($r^2$ of 0.389 and 0.45 for level 1 and 2, respectively) and medium accuracy (Cb of 0.827 and 0.859, respectively). The LRNS clearly over-predicted the intake of one study. When this study was removed from the comparison, the precision and accuracy considerably increased for the level 1 solution. Metabolisable protein was limiting ADG for more than 68% of the treatment averages. Both levels differed regarding precision and accuracy. While level 1 solution had the least MB compared with level 2 (0.058 and 0.159 kg/d, respectively), the precision was greater for level 2 than level 1 (0.89 and 0.70, respectively). The accuracy (Cb) was similar between level 1 and level 2 (p = 0.8997; 0.977 and 0.871, respectively). The RMSEP indicated that both levels were on average under-or over-predicted by about 190 g/d, suggesting that even though the accuracy (Cb) was greater for level 1 compared to level 2, both levels are likely to wrongly predict ADG by the same amount. Our analyses indicated that the level 1 solution can predict DMI reasonably well for this type of animal, but it was not entirely clear if animals consumed at their voluntary intake and/or if the roughness of the diet decreased DMI. A deficit of ruminally-undegradable protein and/or a lack of microbial protein may have limited the performance of these animals. Based on these evaluations, the LRNS level 1 solution may be an alternative to predict animal performance when, under specific circumstances, the fractional degradation rates of the carbohydrate and protein fractions are not known.

Evaluation of Dry Matter Intake and Average Daily Gain Predicted by the Cornell Net Carbohydrate and Protein System in Crossbred Growing Bulls Kept in a Traditionally Confined Feeding System in China

  • Du, Jinping;Liang, Yi;Xin, Hangshu;Xue, Feng;Zhao, Jinshi;Ren, Liping;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1445-1454
    • /
    • 2010
  • Two separate animal trials were conducted to evaluate the coincidence of dry matter intake (DMI) and average daily gain (ADG) predicted by the Cornell Net Carbohydrate and Protein System (CNCPS) and observed actually in crossbred growing bulls kept in a traditionally confined feeding system in China. In Trial 1, 45 growing Simmental${\times}$Mongolia crossbred F1 bulls were assigned to three treatments (T1-3) with 15 animals in each treatment. Trial 2 was conducted with 60 Limousin${\times}$Fuzhou crossbred F2 bulls allocated to 4 treatments (t1-4). All of the animals were confined in individual stalls. DMI and ADG for each bull were measured as a mean of each treatment. All of the data about animals, environment, management and feeds required by the CNCPS model were collected, and model predictions were generated for animals on each treatment. Subsequently, model-predicted DMI and ADG were compared with the actually recorded results. In the three treatments in Trial 1, 93.3, 80.0 and 73.3% of points fell within the range from -0.4 to 0.4 kg/d for DMI mean bias; similarly, in the four treatments in Trial 2, about 86.7, 73.3, 73.3 and 80.0% of points fell within the same range. These results indicate that the CNCPS model can accurately predict DMI of crossbred bulls in the traditionally confined feeding system in China. There were no significant differences between predicted and observed ADG for T1 (p = 0.06) and T2 (p = 0.09) in Trial 1, and for t1 (p = 0.07), t2 (p = 0.14) and t4 (p = 0.83) in Trial 2. However, significant differences between predicted and observed ADG values were observed for T3 in Trial 1 (p<0.01) and for t3 in Trial 2 (p = 0.04). By regression analysis, a statistically different value of intercept from zero for the regression equation of DMI (p<0.01) or an identical value of ADG (p = 0.06) were obtained, whereas the slopes were significantly different (p<0.01) from unity for both DMI and ADG. Additionally, small root mean square error (RMSE) values were obtained for the unbiased estimator of the two variances (DMI and ADG). Thus, the present results indicated that the CNCPS model can give acceptable estimates of DMI and ADG of crossbred growing bulls kept in a traditionally confined feeding system in China.

Improving Initial Abstraction Method of NRCS-CN for Estimating Effective Rainfall (유효우량 산정을 위한 NRCS-CN 모형의 초기손실량 산정방법 개선)

  • Park, Dong-Hyeok;Ajmal, Muhammad;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.491-500
    • /
    • 2015
  • In order to improve the runoff estimation accuracy of the Natural Resources Conservation Service (NRCS) curve number (CN) model, this study incorporated rainfall and maximum potential retention as contributors for initial abstraction. The modification was proposed based on 658 rank-order data of rainfall and subsequent runoff from 15 watersheds. The NRCS-CN model (M1), one of its inspired modified model (M2), and the proposed model (M3) were analyzed employing different CN approaches. Using tabulated, calculated and least squares fitted CNs ($CN_T$, $CN_C$, $CN_{LSF}$, respectively), the models' performances were evaluated based on Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE), and Percent Bias (PBIAS). Applications of model M1, M2, and M3, respectively exhibited watershed cumulative mean [RMSE (23.60, 18.12, 16.04), NSE (0.54, 0.73, 0.79), and PBIAS (36.54, 20.25, 12.00)]. Similarly, using CNC (for M1 and M2 model) and $CN_{LSF}$ (for M3 model), the performance of three models respectively were assessed based on watershed cumulative mean [RMSE (17.17, 15.88, 13.82), NSE (0.76, 0.80, 0.85), and PBIAS (3.06, 4.47, 0.11)]. The proposed model (M3) that linked all of the NRCS-CN variants showed more statistically significant agreement between the observed and estimated data.