• 제목/요약/키워드: root-associated bacteria

검색결과 39건 처리시간 0.024초

Analysis of Microbiota in Bellflower Root, Platycodon grandiflorum, Obtained from South Korea

  • Kim, Daeho;Hong, Sanghyun;Na, Hongjun;Chun, Jihwan;Guevarra, Robin B.;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.551-560
    • /
    • 2018
  • Bellflower root (Platycodon grandiflorum), which belongs to the Campanulaceae family, is a perennial grass that grows naturally in Korea, northeastern China, and Japan. Bellflower is widely consumed as both food and medicine owing to its high nutritional value and potential therapeutic effects. Since foodborne disease outbreaks often come from vegetables, understanding the public health risk of microorganisms on fresh vegetables is pivotal to predict and prevent foodborne disease outbreaks. We investigated the microbial communities on the bellflower root (n = 10). 16S rRNA gene amplicon sequencing targeting the V6-V9 regions of 16S rRNA genes was conducted via the 454-Titanium platform. The sequence quality was checked and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using the weighted Fast UniFrac distance. The average number of sequence reads generated per sample was 67,192 sequences. At the phylum level, bacterial communities from the bellflower root were composed primarily of Proteobacteria, Firmicutes, and Actinobacteria in March and September samples. Genera Serratia, Pseudomonas, and Pantoea comprised more than 54% of the total bellflower root bacteria. Principal coordinate analysis plots demonstrated that the microbial community of bellflower root in March samples was different from those in September samples. Potential pathogenic genera, such as Pantoea, were detected in bellflower root samples. Even though further studies will be required to determine if these species are associated with foodborne illness, our results indicate that the 16S rRNA gene-based sequencing approach can be used to detect pathogenic bacteria on fresh vegetables.

Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

  • Kwak, A Min;Min, Kyeong Jin;Lee, Sang Yeop;Kang, Hee Wan
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.311-318
    • /
    • 2015
  • Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding ${\beta}$-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction.

간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제(第)III보(報) 순수배양기내(純粹培養器內)에서 수도종자권(水稻種子圈)의 협생질소고정균(協生窒素固定菌) 접종효과(接種效果) (Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -III. Inoculation of several associative N2-fixing bacteria on the rice spermospher axenic culture media)

  • 이상규;서장선;고재영
    • 한국토양비료학회지
    • /
    • 제20권3호
    • /
    • pp.269-274
    • /
    • 1987
  • 간척지(干拓地) 토양(土壤)의 잡초(雜草) 및 수도근(水稻根) 조직(組織)에서 분리동정(分離同定)한 수종(數種)의 협생질소고정균(協生窒素固定菌)을 질소(窒素)를 함유(含有)하지 않은 순수배양(純粹培養) 내(內)에서 재배형(栽培型) 및 품종(品種)이 상이(相異)한 수도종자권(水稻種子圈)에 접종(接種)하여 수도(水稻)의 건물중(乾物重), 초장(草長), 근장(根長), 근수등(根數等)의 생육특징(生育特徵)과 협생질소고정력(協生窒素固定力)을 조사(調査)한 결과(結果) 수도품종(水稻品種) 및 협생질소고정균(協生窒素固定菌)의 조합간(組合間) 교호작용(交互作用)은 통계적(統計的)으로 유의(有意)한 상관관계(相關關係)를 보이지 않했다. 그러나 공시수도품종중(供試水稻品種中)에서 Annapuruna는 7종(種)의 협생질소고정균(協生窒素固定菌)을 접종(接種)하므로써 생육량(生育量) 증가(增加)를 보였다. 그리고 7종(種)의 협생질소고정균(協生窒素固定菌)을 교호접종(交互接種)했을때 협생질소고정력(協生窒素固定力)은 Annapuruna와 신광(新光)벼 조합(組合)에서 가장 높았으며 IR-8이 가장 낮았다. 또한 협생질소고정균(協生窒素固定菌)과 수도품종간(水稻品種間)에는 신광(新光)벼와 Pseudomonas sp. H8 조합(組合)에서 질소고정력(窒素固定力)이 가장 높았다.

  • PDF

치근단 병변에서 Actinomyces 종의 검정을 위한 간접 면역형광법적 연구 (INDIRECT IMMUNOFLUORESCENCE FOR THE IDENTIFICATION OF ACTINOMYCES SPECIES IN PATIENTS WITH PERIAPICAL LESION)

  • 장원정;윤수한;권오양
    • Restorative Dentistry and Endodontics
    • /
    • 제21권1호
    • /
    • pp.121-135
    • /
    • 1996
  • Actinomyces are Gram-positive, non-acid-fast, anaerobic or microaerophilic filamentous bacteria. These organisms are frequently detected from infected root canals and periapical lesion. The purpose of this study was to use indirect immunofluorescence to determine the prescence of select Actinomyces species in a survey of teeth associated with periapical lesion, to clarify the relationship between clinical symptoms of periapical lesions and the Actinomyces species and to study on the cross reaction among Actinomyces. Actinomyces israelii serotype I (ATCC 12102), Actinomyces israelii serotype II (ATCC 29322), Actinomyces viscosus serotype II (ATCC 19246), Actinomyces naslundii serotype I (ATCC 12104) were cultured in anaerobic condition. Rabbit antisera were prepared by intravenous injection of formalized whole cells. Indirect immunofluorescence method was used to achieve the purpose. The following results were obtained. 1. There was a relationship between Actinomyces and periapical disease. 2. A. israelii serotype I, II were frequently identified with Indirect Immunofluorescence and most often assosiated with periapical disease. In culture finding, there was no significant difference between each group. 3. Indirect Immunofluoresence is both more sensitive and more rapid than culture for identification of Actinomyces species in patients with periapical lesion. 4. A. israelii serotype I, II was highly isolated in infected root canals with local swelling, A. naslundii serotype I was highly isolated in those with foul odor, and A. israelii serotype I was found in higher frequncy in those with exudate than other bacteria. 5. In the Indirect Immunofluorescence (1 : 320), A positive cross reaction was obtained between A. israelii serotype I and A. israelii serotype II, also, A. viscosus serotype II and A. naslundii serotype I. There was no cross reaction between A. israelii serotype I, II and A. viscosus serotype II, A. naslundii serotype I.

  • PDF

Long-Distance Control of Nodulation: Molecules and Models

  • Magori, Shimpei;Kawaguchi, Masayoshi
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.129-134
    • /
    • 2009
  • Legume plants develop root nodules to recruit nitrogen-fixing bacteria called rhizobia. This symbiotic relationship allows the host plants to grow even under nitrogen limiting environment. Since nodule development is an energetically expensive process, the number of nodules should be tightly controlled by the host plants. For this purpose, legume plants utilize a long-distance signaling known as autoregulation of nodulation (AON). AON signaling in legumes has been extensively studied over decades but the underlying molecular mechanism had been largely unclear until recently. With the advent of the model legumes, L. japonicus and M. truncatula, we have been seeing a great progress including isolation of the AON-associated receptor kinase. Here, we summarize recent studies on AON and discuss an updated view of the long-distance control of nodulation.

Screening Plant Growth-Promoting Bacteria with Antimicrobial Properties for Upland Rice

  • Khammool Khamsuk;Bernard Dell;Wasu Pathom-aree;Wanwarang Pathaichindachote;Nungruthai Suphrom;Nareeluk Nakaew;Juangjun Jumpathong
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1029-1039
    • /
    • 2024
  • This study explores beneficial bacteria isolated from the roots and rhizosphere soil of Khao Rai Leum Pua Phetchabun rice plants. A total of 315 bacterial isolates (KK001 to KK315) were obtained. Plant growth-promoting traits (phosphate solubilization and indole-3-acetic acid (IAA) production), and antimicrobial activity against three rice pathogens (Curvularia lunata NUF001, Bipolaris oryzae 2464, and Xanthomonas oryzae pv. oryzae) were assessed. KK074 was the most prolific in IAA production, generating 362.6 ± 28.0 ㎍/ml, and KK007 excelled in tricalcium phosphate solubilization, achieving 714.2 ± 12.1 ㎍/ml. In antimicrobial assays using the dual culture method, KK024 and KK281 exhibited strong inhibitory activity against C. lunata, and KK269 was particularly effective against B. oryzae. In the evaluation of antimicrobial metabolite production, KK281 and KK288 exhibited strong antifungal activities in cell-free supernatants. Given the superior performance of KK281, taxonomically identified as Bacillus sp. KK281, it was investigated further. Lipopeptide extracts from KK281 had significant antimicrobial activity against C. lunata and a minimum inhibitory concentration (MIC) of 3.1 mg/ml against X. oryzae pv. oryzae. LC-ESI-MS/MS analysis revealed the presence of surfactin in the lipopeptide extract. The crude extract was non-cytotoxic to the L-929 cell line at tested concentrations. In conclusion, the in vitro plant growth-promoting and disease-controlling attributes of Bacillus sp. KK281 make it a strong candidate for field evaluation to boost plant growth and manage disease in upland rice.

분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개 (Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts)

  • ;사동민;김재정
    • 한국토양비료학회지
    • /
    • 제37권4호
    • /
    • pp.266-287
    • /
    • 2004
  • 식물체에 해를 끼치지 않고 식물체와 공생하는 박테리아는 식물의 생장을 촉진 시키며 친환경적 식물 보호제 역할을 함으로서 높은 관심을 받아왔다. Methylobacterium spp.로 분리된 분홍색 색소를 형성하는 methylotrophic bacteria (PPFMS)는 식물의 잎 표면에 서식한다. 거의 모든 식물체의 잎에는 PPFMS를 가지고있으며, Methylobacterium의 특별한 특성을 가진 이들은 탄소와 에너지원으로 잎의 methanol를 이용한다. 비록 이들 박테리아들은 잘 알려 지지 않았지만. 그들은 식물 대사 작용에 영향을 주면서 함께 진화되어 왔다. 이 주장은 다음의 예로 보인 관찰로서 뒷받침 한다. (1) PPFMS는 씨 안에서 발견되고 (2) PPFMS는 자주 무균 세포 배양에서 발견되고 (3) 적은 수의 PPFMS를 지닌 종자는 낮은 발아율을 보였고, (4) 감소된 PPFMS를 가진 식물들은 낮은 줄기/뿌리 비율을 보이고, (5) 콩깍지 형성 시기에 콩잎에 PPFMS의 엽면처리는 종자 수와 생산량을 높이며, (6) 우산이끼를 배양하는데 있어서 PPFM에 의해 생성된 비타민 Rl2는 우산이끼의 생장을 위해 필요하고 (7) 벼에 있어서 Rhizoctonia solani에 인해 나타나는 엽초마름병의 발병률은 PPFMS를 처리한 벼에서 억제되거나 감소되었고, 그리고 (8) PPFM의 종은 기공과 엽록소의 농도, malic acid의 함량을 증가시켜 식물의 광합성 능을 증가시켰다. Methylobacterium spp.은 식물체의 잔사를 이용하거나 식물체에 유용한 대사산물을 생산함으로써 식물의 신진대사에 관여하는 것으로 알려진 공생자이다. 박테리아와 식물체간의 이로운 상호작용에 관해 알려진 많은 보고서들이 있다. 식물체의 수분장애 완화, 광합성호르몬 생산, 그리고 질소고정과 같은 식물의 생장을 촉진시키는 박테리아 종과 같은 선발은 성공적으로 분리 해낼 수 있었고, 작물생산에 있어서 이 같은 미생물의 처리는 생산력을 증가시킬 것이다.

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.

감염근관에서 분리한 Porphyromonas endodontalis와 Prevotella intermedia의 제한효소분석법에 의한 유전자 이질성에 관한 연구 (A Study of Genomic Clonal Types of Porphyromonas endodontalis and Prevotella intermedia Isolated from Infected Root Canals with Restriction Endonuclease Analysis)

  • 신주희;김한욱;윤수한
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.413-427
    • /
    • 1997
  • Porphyromonas endodontalis and Prevotella intermedia are black-pigmented anaerobic gram negative rods which have been isolated from infected root canals and submucous abscesses of endodontic origin. And they are associated with clinical symptoms such as pain, percussion, and foul odor. It has been reported that there are 3 serotypes according to capsule membrane in P. endodontalis and 2 DNA homology groups and 3 serotypes in P. intermedia, but there is no data available regarding genetic diversity for the species P. endodontalis and P. intermedia. The purpose of this study is to investigate genetic diversities between individual strains of P. endodontalis and P. intermedia which are indistinguishable by serotyping and biotyping using bacterial DNA restriction endonuclease analysis. 45 teeth with at least one clinical symptoms, with single canal, and with pulp necrosis were sampled. For sampling bacteria, access cavity was prepared after disinfecting tooth and its surroundings. Then the paper point was inserted to the apex of the canal, leave there for 15 seconds, and finally it was placed into PRAS Ringer's solution and PBS solution. P. endodontalis and P. intermedia were identified by biochemical test and IIF after subculturing black and brown colonies which were produced after 7 days of incubation on BAP in anaerobic chamber. P. endodontalis and P. intermedia strains were grown in BHI broth and whole genomic DNA was extracted by phenol-chloroform extraction technique and digested by restriction endonuclease, Eco RI and Pst I. The resulting DNA fragments were separated by agarose gel electrophoresis, stained with EtBr and photographed under UV light. The results were as follows : 1. In both P. endodontalis and P. intermedia, different serotypes could be found within a root canal of same patient. 2. There were obvious genetic heterogeneity within a patient and within a serotype in both P. endodontalis and P. intermedia. 3. P. endodontalis serotype c, isolated from different patients, exhibited limited genotypic diversity.

  • PDF

세균액 및 세균단백질 추출물이 배양 세포에 미치는 영향 (EFFECTS OF HEAT-KILLED AND SONIC EXTRACTS OF MICROORGANISM ON CULTURED CELLS)

  • 유영대;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제25권4호
    • /
    • pp.606-618
    • /
    • 2000
  • Dental pulp infection is most commonly caused by extensive dental caries, and some bacterial species invade root canals; bacterial components and products are thought to be associated with the pathogenesis of periapical periodontitis. A principle driving force behind pulpal disease response appears to lie in the host immune system's to bacteria and their products. We examined the production of interleukin $1{\beta}$ (IL-$1{\beta}$) and tumor necrosis factor ${\alpha}$(TNF-${\alpha}$) from human peripheral mononuclear cells, lymphocytes and monocytes stimulated by heat-killed Acitnobacillus actinomycetemcomitans (ATCC 29523), Porphyromonas gingivalis (ATCC 33277) and Prevotella intermedia (ATCC 25611), and also by their sonicated bacterial extracts (SBE), respectively. The effects of three strains of heat-killed bacteria and their SBEs on the morphology of cultured blood cell lines HL-60 (KCLB 10240) and J774A.1 (KCLB 40067) were observed under the inverted microscope. Ultrastructural changes of J774A.1 exposed to heat-killed P. intermedia and its SBE were investigated using transmission electron microscopy. Production of IL-$1{\beta}$ was reduced in human peripheral mononuclear cells after stimulation by sonic bacterial extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. Heat-killed and sonic extract of P. gingivalis inhibited the production of TNF-${\alpha}$ in peripheral mononuclear cells. Production of TNF-${\alpha}$ was inhibited in peripheral monocytes after stimulation by sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. HL-60 and J 774A.1 cells showed granular degeneration after treatment with heat-killed and sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia Chromatin margination and shrinkage were observed in 774A.1 treated with heat-killed P. intermedia. Cell wall structure and organelles were destroyed and vacuoles were formed in cytoplasm in J774A.1 treated with P. intermedia sonic extract. These results suggest that A actinomycetemcomitans, P gingivalis and P intermedia may have an important role in the formation and progression of pulpal diseases via both modulation of production of IL-$1{\beta}$ and TNF-${\alpha}$ from blood mononuclear cells and cytopathic effects.

  • PDF