• Title/Summary/Keyword: root intensity

Search Result 336, Processing Time 0.022 seconds

Agroclimatic Zone and Characters of the Area Subject to Climatic Disaster in Korea (농업 기후 지대 구분과 기상 재해 특성)

  • 최돈향;윤성호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.13-33
    • /
    • 1989
  • Agroclimate should be analyzed and evaluated accurately to make better use of available chimatic resources for the establishment of optimum cropping systems. Introducing of appropriate cultivars and their cultivation techniques into classified agroclimatic zone could contribute to the stability and costs of crop production. To classify the agroclimatic zones, such climatic factors as temperature, precipitation, sunshine, humidity and wind were considered as major influencing factors on the crop growth and yield. For the classification of rice agroclimatic zones, precipitation and drought index during transplanting time, the first occurrence of effective growth temperature (above 15$^{\circ}C$) and its duration, the probability of low temperature occurrence, variation in temperature and sunshine hours, and climatic productivity index were used in the analysis. The agroclimatic zones for rice crop were classified into 19 zones as follows; (1) Taebaek Alpine Zone, (2) Taebaek Semi-Alpine Zone, (3) Sobaek Mountainous Zone, (4) Noryeong Sobaek Mountainous Zone, (5) Yeongnam Inland Mountainous Zone, (6) Northern Central Inland Zone, (7) Central Inland Zone, (8) Western Soebaek Inland Zone, (9) Noryeong Eastern and Western Inland Zone, (10) Honam Inland Zone, (ll) Yeongnam Basin Zone, (12) Yeongnam Inland Zone, (13) Western Central Plain Zone, (14) Southern Charyeong Plain Zone, (15) South Western Coastal Zone, (16) Southern Coastal Zone, (17) Northern Eastern Coastal Zone, (18) Central Eastern Coastal Zone, and (19) South Eastern Coastal Zone. The classification of agroclimatic zones for cropping systems was based on the rice agroclimatic zones considering zonal climatic factors for both summer and winter crops and traditional cropping systems. The agroclimatic zones were identified for cropping systems as follows: (I) Alpine Zone, (II) Mountainous Zone, (III) Central Northern Inland Zone, (IV) Central Northern West Coastal Zone, (V) Cental Southern West Coastal Zone, (VI) Gyeongbuk Inland Zone, (VII) Southern Inland Zone, (VIII) Southern Coastal Zone, and (IX) Eastern Coastal Zone. The agroclimatic zonal characteristics of climatic disasters under rice cultivation were identified: as frequent drought zones of (11) Yeongnam Basin Zone, (17) North Eastern Coastal Zone with the frequency of low temperature occurrence below 13$^{\circ}C$ at root setting stage above 9.1%, and (2) Taebaek Semi-Alpine Zone with cold injury during reproductive stages, as the thphoon and intensive precipitation zones of (10) Hanam Inland Zone, (15) Southern West Coastal Zone, (16) Southern Coastal Zone with more than 4 times of damage in a year and with typhoon path and heavy precipitation intensity concerned. Especially the three east coastal zones, (17), (18), and (19), were subjected to wind and flood damages 2 to 3 times a year as well as subjected to drought and cold temperature injury.

  • PDF

Ecological Environment and Rhizosphere Microflora in the Native Soil of Purple-Bracted Plantain Lily for Wild Vegetables (비비추 나물의 자생지 생태환경과 근권미생물상)

  • Cho, Ja-Yong;Heo, Buk-Gu;Yang, Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.4
    • /
    • pp.389-400
    • /
    • 2005
  • This study was conducted to investigate into the ecological environments and the soil microflora of purple-bracted plantain lily (Hosta longipes Matsumura) for wild vgetables. Native soil textures of purple-bracted plantain lily were in the order of sandy loam (SL) > loam (L) > clay loam (CL). pH in soil was relatively acid by 4.8, electric conductivity was 0.08mS/cm, and organic matter content was 0.08g/kg. CEC was measured by $100.8cmol^{(+)}kg^{-1}$ and available phosphate was 103.4mg/kg. Contents of exchangeable cations in terms of potassium, calcium, and magnesium were measured by $0.33cmol^{(+)}kg^{-1},\;2.26cmol^{(+)}kg^{-1},\;and\;0.87cmol^{(+)}kg^{-1}$, etc. Diurnal changes in the air temperature of the natives were 15 to $20^{\circ}C$, that temperature differential was relatively little compared with that in open field by 15 to $30^{\circ}C$. Relative humidity in the natives were much more humid by 60 to 80% compared with that in open feld by 35 to 85%. Light intensity in the natives and the open field at ten o'clock were $2,300{\mu}mol/m^2/sec.\;and\;1,750{\mu}mol/m^2/sec.$ Total number of soil microorganisms were $8.4{\times}10^7\;c.f.u./g$. Mycorrhizal spore densities over $500{\mu}m,\;355{\sim}500{\mu}m,\;251{\sim}354{\mu}m,\;107{\sim}250{\mu}m\;and\;45{\sim}106{\mu}m$ were 0.8, 1.3, 2.1, 38.1, and 110.0 respectively. Mycorrhizal root infections by vesicle and hyphae were 17% and 6%. However, arbuscules in the roots were not shown.

  • PDF

Effect of Scrapping Aerial Mycelia and Light on the Production of Macroconidia and Chlamydospores of Cylindrocarpon destructans Causing Root Rot of Panax ginseng (기중균사 제거와 광처리가 인삼 뿌리썩음병균 Cylindrocarpon destructans의 대형분생포자 및 후막포자 생성에 미치는 영향)

  • Cho Dae-Hui;Yu Yun-Hyun;Ohh Seung-Hwan
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.123-129
    • /
    • 1999
  • Under the light condition of 25,000 Lux (12 hrs dark and light cycle) with scrapping treatment of aerial mycelia of Cylindrocarpon destructans on potato dextrose agar (PDA), V-8 juice agar, and ginseng extract agar, production of the macroconidia was increased to $3.7\~8.1$ fold over them produced in the dark. They were also produced $7.7\~18.0$ times more in the liquid cultures under the light condition than under the dark as well. PDA and V-8 juice agar among the tested were the best for the macroconidium production. On PDA, 1,585 $macroconidia/mm^2$ were produced under the light of 25,000 Lux with scrapping treatment of aerial mycelia of C. destructans, which is 3.2 and 1.4 times more than those produced under 3,000 and 10,000 Lux, respectively. Meanwhile, $20\~99$ macroconidia/$mm^2$ were produced by the non-scrapping under the light condition between 3,000 Lux and 25,000 Lux. The macroconidia were, however, lysed at $6\~7$ days after being incubated under the above range of the light. They were consisted of $1\~3$ cells in a macroconidium while $69.4\~100\%$ of them were the two-celled and the number did not seem to be affected by either the scrapping or the light. Production of chlamydospore converted from mycelia of C. destructans seemed to be promoted by the light and the scrapping as well. The 1,285 chlamydospres/$mm^2$ were produced with the light (25,000 Lux), which is 2.8 and 1.2 times more than those with 3,000 and 10,000 Lux, respectively. Scrapping the aerial mycelia of the cultures increased the chlamydospore formation to 1.9, 2.5 and 1.4 times more than the non-scrapping under the light intensity of 3,000 Lux, 10,000 Lux, and 25,000 Lux, respectively. On PDA, 1 to 8 chlamydospore(s) per catena were formed by all treatments tested and $34.2\~58.9\%$ of them was a single chlamydospore, However, the numbers was affected by neither the light ($3,000\~25,000$ Lux) nor the scrapping the aerial mycelia.

  • PDF

Light Quality and Photoperiod Affect Growth of Sowthistle (Ixeris dentata Nakai) in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 광질과 광주기에 따른 씀바귀의 생육)

  • Kim, Hye Min;Kang, Jeong Hwa;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • This study was conducted to examine the optimal environmental condition for promoting the growth of sowthistle as affected by light quality and photoperiod in a closed-type plant production system. Seeds were sown in 240-cell plug trays and then germinated for 3 days at a 24-hour photoperiod in a closed-type plant production system with LED lights (R:B:W = 8:1:1). Seedlings were transplanted and grown under 3 types of LED (R:B:W = 8:1:1, R:W = 3:7, or R:B = 8:2) and 4 photoperiods (24/0, 16/8, 8/16, or 4/20 hours) with $230{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ light intensity at a density of $20cm{\times}20 cm$. The experimental design was a randomized complete block design. Plants were cultured for 40 days un der the condition of $21{\pm}2^{\circ}C$ and $70{\pm}10%$ relative humidity after transplanting. Plants were fed with a recycling nutrient solution (pH 7.0 and EC $2.0dS{\cdot}m^{-1}$) contained in a deep floating tank. Fresh weight and dry weight of shoot or root, leaf length, and leaf area were the greatest in the photoperiod of 24/0 (light/dark) with RW LED. The highest number of leaves occurred in the photoperiod of 16/8 (light/dark) with RB LED, while the incidence of tip burn was higher in the photoperiod of 24/0 (light/dark) compared to the other treatments. Chlorophyll value was the highest in the 16/8 (light/dark) photoperiod and there was no significant difference by light quality. Chlorophyll fluorescence was the lowest in the photoperiod of 24/0 (light/dark) compared with other treatments. Therefore, in terms of economic feasibility and productivity for Ixeris dentata Nakai cultivation in a closed-type plant production system, the results obtained suggest that plants grew the best when kept in a photoperiod of 16/8 (light/dark) and light quality of combined LED RW (3:7).

Growth and Flower Bud Induction in Strawberry 'Sulhyang' Runner Plant as Affected by Exogenous Application of Benzyladenine, Gibberellic Acid, and Salicylic Acid (벤질아데닌, 지베렐린산, 살리실산이 '설향' 딸기묘의 생장과 화아 유도에 미치는 영향)

  • Thi, Luc The;Nguyen, Quan Hoang;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Strawberry ($Fragaria{\times}ananassa$) is one of the most important and popular fruit crops in the world, and 'Sulhyang' is one of the principal cultivars cultivated in the Republic of Korea for the domestic market. The growth and flower induction in strawberry is the process which influences directly on fruit bearing and yield of this crop. In this study, effect of benzyladenine (BA), gibberellic acid ($GA_3$), and salicylic acid (SA) on growth and flower bud induction in strawberry 'Sulhyang' was investigated. The 3-week-old runner plants, grown in 21-cell propagation trays, were potted and cultivated in growth chambers with $25^{\circ}C/15^{\circ}C$ (day/night) temperatures, 70% relative humidity (RH), and light intensity of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density (PPFD) provided by white light emitting diodes (LEDs). The runner plants were treated with one of three concentrations, 0 (control), 100, and $200mg{\cdot}L^{-1}$ of BA, $GA_3$, or SA solution. The chemicals were sprayed two times on leaves of runner plants at an interval of two weeks. After 9 weeks the results showed that the application of all chemicals caused reduction of root length and chlorophyll (SPAD) content as compared to the control. The lowest chlorophyll (SPAD) content was recorded in plants treated with $GA_3$. However, the treatment of $200mg{\cdot}L^{-1}$ $GA_3$ promoted leaf area, leaf fresh weight, and plant fresh weight. The greatest flower induction (85%) and number of inflorescences (4.3 inflorescences per plant) were observed in the treatment of $200mg{\cdot}L^{-1}\;SA$, followed by $100mg{\cdot}L^{-1}\;SA$. Overall, results suggest that foliar application of $GA_3$ solution could accelerate plant growth, while foliar application of SA solution could induce hastened flowering. Further studies may be needed to find out the relationship between $GA_3$ and SA solutions treated in a combination, and the molecular mechanism involved in those responses observed.

Effect of Pre-harvest Irradiation of UV-A and UV-B LED in Ginsenosides Content of Ginseng Sprouts (새싹 인삼의 수확 전 UV-A 및 -B LED의 조사에 의한 진세노사이드의 영향)

  • Jang, Seong-Nam;Lee, Ga-Oun;Sim, Han-Sol;Bae, Jin-Su;Lee, Ae-Ryeon;Cho, Du-Yong;Cho, Kye-Man;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2022
  • This study was conducted to determine the changes in ginsenosides content according to additional UV-A, and UV-B LED irradiation before harvesting the ginseng sprouts. One-year-old ginseng seedlings (n=100) were transplanted in a tray containing a ginseng medium. The ginseng sprouts were grown for 37 days at a temperature of 20℃ (24h), a humidity of 70%, and an average light intensity of 80 µmol·m-2·s-1 (photoperiod; 24h) in a container-type plant factory. Ginseng sprouts were then transferred to a custom chamber equipped with UV-A (370 nm; 12.90 W·m-2) and UV-B (300 nm; 0.31 W·m-2) LEDs and treated for 3 days. Growth parameters and ginsenoside contents in shoot and root were conducted by harvesting on days 0 (control), 1, 2, and 3 of UV treatments, respectively. The growth parameters showed non-significant differences between the control and the UV treatments (wavelengths or the number of days). Ginsenoside contents of the shoot was highly improved by 186% in UV-A treatment compared to the control in 3 days of the treatment time. The ginsenoside contents of the roots was more improved in UV-A 1-day treatment and UV-B 3-day treatment, compared to the control by 171% and 160%, respectively. As a result of this experiment, it is thought that UV LED irradiation before harvesting can produce sprout ginseng with high ginsenoside contents in a plant factory.