• Title/Summary/Keyword: root inoculation

Search Result 299, Processing Time 0.023 seconds

Effects of Grafting Cultivation on the Growth and Yield of Paprika in Highlands (고랭지 착색단고추의 접목재배 효과)

  • Lee, Jong-Nam;Lee, Eung-Ho;Kim, Jeom-Sun;Kim, Won-Bae;Ryu, Seung-Yeol;Yong, Yeong-Rok
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • This experiment was conducted to screen the suitable rootstocks for the soil cultivation of paprika (Capsicum annuum L.) in highland. Sixteen kinds of rootstocks were grafted to the red colored 'Spirit' scion for the resistances to diseases like fruit lot (Phytophthora capsici) and bacterial wilt (Ralstonia solanacearum). Four varieties among the rootstocks, 'Tantandaemok', 'Skurt-S', 'AC 2258', and 'PST 8301' were selected for the high resistance to fruit rot of paprika. However non-grafted control plants were totally dead at five days after inoculation. Furthermore, seven varieties including 'Yeokgang', ;Tantandaemok', 'TE412', 'MC 4', 'PST VK', and 'PST NV' were selected for the high resistance to bacterial wilt. The grafting with pest resistant rootstocks could enhance the rhizophere environment through root fresh weight increase. High yielding rootstocks for paprica 'Spirit' were PST 8301, MC 4, and Wanggeun.

Ocurrence of Clubroot Caused by Plasmodiophora brassicae on Kohlrabi in Korea (Plasmodiophora brassicae에 의한 콜라비 뿌리혹병 발생)

  • Song, MinA;Choi, InYoung;Song, JeongHeub;Lee, KuiJae;Shin, HyeonDong;Galea, Victor
    • Research in Plant Disease
    • /
    • v.25 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • From 2016 to 2018, approximately 15% of kohlrabi were observed displaying significant clubroot symptoms in farmer's fields in Jeju, Korea. The initial infection appeared as hypertrophy of root hairs, and as the disease progressed, galls formation occurred on the main roots, finally disease progress resulted in yellowing and wilting of leaves. Pathogenicity was proven by artificial inoculation of plants with resting spore suspension, fulfilling Koch's postulates. The resting spore is one-celled, spherical and subspherical, colorless, and $3-5{\mu}m$ in diameter. On the basis of the morphological characteristics and phylogenetic analyses of internal transcribed spacer rDNA, the causal agent was identified as Plasmodiophora brassicae. To our knowledge, this is the first report on the occurrence of P. brassicae on kohlrabi in Korea.

Isolation and Characterization of Cold-Adapted PGPB and Their Effect on Plant Growth Promotion

  • Li, Mingyuan;Wang, Jilian;Yao, Tuo;Wang, Zhenlong;Zhang, Huirong;Li, Changning
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1218-1230
    • /
    • 2021
  • Cold-adapted plant growth-promoting bacteria (PGPB) with multiple functions are an important resource for microbial fertilizers with low-temperature application. In this study, culturable cold-adapted PGPB strains with nitrogen fixation and phosphorus solubilization abilities were isolated. They were screened from root and rhizosphere of four dominant grass species in nondegraded alpine grasslands of the Qilian Mountains, China. Their other growth-promoting characteristics, including secretion of indole-3-acetic acid (IAA), production of siderophores and ACC deaminase, and antifungal activity, were further studied by qualitative and quantitative methods. In addition, whether the PGPB strains could still exert plant growth-promoting activity at 4℃ was verified. The results showed that 67 isolates could maintain one or more growth-promoting traits at 4℃, and these isolates were defined as cold-adapted PGPB. They were divided into 8 genera by 16S rRNA gene sequencing and phylogenetic analysis, of which Pseudomonas (64.2%) and Serratia (13.4%) were the common dominant genera, and a few specific genera varied among the plant species. A test-tube culture showed that inoculation of Elymus nutans seedlings with cold-adapted PGPB possessing different functional characteristics had a significant growth-promoting effect under controlled low-temperature conditions, including the development of the roots and aboveground parts. Pearson correlation analysis revealed that different growth-promoting characteristics made different contributions to the development of the roots and aboveground parts. These cold-adapted PGPB can be used as excellent strain resources suitable for the near-natural restoration of degraded alpine grasslands or agriculture stock production in cold areas.

Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean (Glycine max (L.) Merrill)

  • Chanwit Suriyachadkun;Orawan Chunhachart;Moltira Srithaworn;Rungnapa Tangchitcharoenkhul;Janpen Tangjitjareonkun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1435-1446
    • /
    • 2022
  • Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 ㎍/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 ㎍/ml and the strain EX51 produced the highest amount of ammonia 361.04 ㎍/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 ㎍/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Identification of New Isolates of Phytophthora sojae and Selection of Resistant Soybean Genotypes

  • Su Vin Heo;Hye Rang Park;Yun Woo Jang;Jihee Park;Beom Kyu Kang;Jeong Hyun Seo;Jun Hoi Kim;Ji Yoon Lee;Man Soo Choi;Jee Yeon Ko;Choon Song Kim;Sungwoo Lee;Tae-Hwan Jun
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.329-335
    • /
    • 2024
  • Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, can occur at any growth stage under poorly drained and humid conditions. The expansion of soybean cultivation in South Korean paddy fields has increased the frequency of PRR outbreaks. This study aimed to identify four P. sojae isolates newly collected from domestic fields and evaluate race-specific resistance using the hypocotyl inoculation technique. The four isolates exhibited various pathotypes, with GJ3053 exhibiting the highest virulence complexity. Two isolates, GJ3053 and AD3617, were screened from 205 soybeans, and 182 and 190 genotypes (88.8 and 92.7%, respectively) were susceptible to each isolate. Among these accessions, five genotypes resistant to both isolates were selected. These promising genotypes are candidates for the development of resistant soybean cultivars that can effectively control PRR through gene stacking.

A Mechanism of Density-Dependent Population Change in Heterodera glycines (콩시스트선충의 밀도변화 기작)

  • Kim Young Ho;Riggs Robert D.;Kim Kyung Soo
    • Korean Journal Plant Pathology
    • /
    • v.2 no.3
    • /
    • pp.199-206
    • /
    • 1986
  • Penetration level, female development and histological changes in infected root tissues were investigated following inoculation with different inoculum levels (110,440 and 1760 juveniles/plant) of Heterodera glycines (SCN) race 3 on susceptible 'Lee' and resistant 'Pickett' soybean cultivars. Penetration level was lower in Pickett at the higher inoculum levels but no differences were detected in Lee. However, the lower penetration level in the resistant soybean cultivar appeared not to be directly related to plant resistance (female maturation). The number of females recovered from Lee was lower at the highest inoculum level. The number of females maturing on Pickett was much less than that on Lee, showing that changes of SCN population is associated with the number of SCN maturing rather than nematode penetration. In Lee mono-infection sites (a single nematode per site) syncytia had dense cytoplasm and no central vacuoles. while multi-infected sites (many overlapping nematodes per site) had syncytia with a large central vacuole and many small vacuoles. Resistant responses in mono-and multi-infected root tissues of Pickett were delayed and rapid necrosis, respectively. The differences in tissue response are suggested as a mechanism that controls density-dependent population changes in resistant and/or susceptible soybean cultivars.

  • PDF

Effect of Entomopathogenic Nematodes on Egg Mass Formation by the Northern Root-knot Nematode, Meloidogyne hapia (곤충병원성 선충이 당근뿌리혹선충의 난낭 형성에 미치는 영향)

  • 김형환;추호렬;조명래;전흥용;임명순
    • Korean journal of applied entomology
    • /
    • v.41 no.3
    • /
    • pp.225-231
    • /
    • 2002
  • The entomopathogenic nematodes, Steinernema carpocapsae All strain (ScA), S.glaseri NC strain (SgN) and H. bacteriophora NC 1 strain (HbN), were evaluated for the effects on egg mass formation by the northern root-knot nematode, Meloidogyne hapla in pot experiment using tomato. In the first experiment, 2.5$\times$10$^{5}$ infective juveniles (Ijs) of entomopathogenic nematodes were inoculated to 100 g of the soil infected with ca. 450 Ijs of M. hapla/100 ㎤ in 150 $mell$ container. The number of egg mass was significantly decreased to 9.4-36.5 in ScA, to 5.7-24.7 in SgN and to 11.2-16.0 in HbN treatments compared with 62.5 in M.hapla alone. In the second experiment, ScA and S.carpocapsae Pocheon strain (ScP) and SgN and S.glaseri Dongrae strain (SgD) were treated to 350 g of the soil infected with 100, 200 M.hapla larvae/100 ㎤ in 450 $mell$ container The entomopathogenic nematodes were inoculated at the rate of 2,020 Ijs and 1.6$\times$105 Ijs in 350 g soil. The number of egg mass of M.hapla were significantly decreased in the entomopathogenic nematode treatments compared with M.hapla alone although no differences were observed among Steinernema species, strains, or infection concentrations. Treatments of entomopathogenic nematodes 3 days before M.hapla inoculation were more effective on reduction of egg mass formation than those of 3 days after M.hapla treatments. Growth of tomato was not affected by entomopathogenic nematode treatments.

Large-scale Culture of Plant Cell and Tissue by Bioreactor System

  • Son, Sung-Ho;Park, Sung-Mee;Park, Seung -Yun;Kwon, Oh-Woung;Lee, Yun-Hee;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Large-scale cultures of plant cell, tissue, and organ have been achieved by using BTBB. When different sized BTBBs (5 L, 20 L, 100 L, 300 L, and 500 L) were tested for the culture of yew cells (Taxus cuspidata Sieb. et Zucc.), cell growth increment reached to 94.5% in SCV after 24 days of culture with 30% of inoculation cell density. However, there were some variations in the production of taxol and its derivatives among the BTBBs of different size. Approximate 4 ㎎/l of taxol and 84 ㎎/l of total taxanes were obtained by using a 500L BTBB after 6 weeks of culture. With a 20L BTBB, about 20,000 cuttings of virus-free potatoes (cv. Dejima) could be obtained by inoculating 128 explants and maintaining 8 weeks under 16 hr light illumination. The frequency of ex vitro rooting of the cuttings revealed as more than 99% under 30% shade. By incorporating two-stage culture process consisting of multiple bulblet formation in solid medium and bulblet development in liquid medium, mass propagation of lily through bioreactor seemed to be possible. In the case of 'Marcopolo', the growth of mini-bulblets in BTBB was nearly 10 folds faster than that of the solid medium. Time course study revealed that maximum MAR yield of ginseng (Panax ginseng C. A. Meyer) in a 5 L and 20 L BTBB after 8 weeks of culture was 500 g and 2.2 ㎏, respectively. By cutting the MAR once and/or twice during the culture, the yield of root biomass could be increased more than 50% in fresh weight at the time of harvest. With initial inoculum of 500 g of sliced MAR in a 500 L BTBB, 74.8 ㎏ of adventitious root mass was obtained after 8 weeks of culture. The average content of total ginseng saponin obtained from small-scale and/or pilotscale BTBBs was approximately 1% per gram dry weight. Based on our results, we suggest that large-scale cultures of plant cell, tissue, and organ using BTBB system should be quite a feasible approach when compared with conventional method of tissue culture.

  • PDF