• Title/Summary/Keyword: root and leaf

Search Result 1,822, Processing Time 0.034 seconds

Growth and Mineral Contents of Spinach (Spinacia oleracea L.) and Radish (Raphanus sativus L.) as Related with a Low Dose Gamma Irradiation

  • Hwangbo, Jun-Kwon;Kim, Jae-Sung;Lim, Ji-Hyeok;Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.400-404
    • /
    • 2003
  • This study was to evaluate the effects of gamma irradiation on the germination, nutrient concentrations and growth of spinach and radish. Both the spinach and radish seeds exhibited relatively higher germination rates in response to the low doses of gamma irradiation compared to the non -irradiated control. Leaf DW of the radish did not respond to gamma irradiation but that of the spinach increased significantly in response to a gamma radiation of 4 Gy (P< 0.05). Leaf growth parameters of the spinach including the leaf area and SLA (leaf area/leaf dry weight) also demonstrated increased responses to gamma irradiation. R/S (root dry weight/shoot dry weight), root DW and root length of the spinach exhibited a positive response to gamma irradiation while those of the radish did not. In contrast, SRL (root length/root dry weight) significantly decreased with gamma irradiation at 8 Gy for the spinach, but not for the radish. The tissue nitrogen concentrations of the spinach showed an increased response to gamma irradiation while that of the radish did not. Furthermore, higher concentrations of phosphorus, potassium, calcium and magnesium were found in the irradiated spinach, but not in the irradiated radish. It seems that the non-specific physiological and/or biochemical activities of spinach might be accelerated by gamma irradiation, possibly accounting for the stimulation of nutrient uptake from the root media and early biomass accumulation in the current study.

Effect of Pot Depth on Root Development and Distribution during Seedling Growing Period in Tobacco. (육묘포트 깊이가 담배의 뿌리발달 및 분포에 미치는 영향)

  • 이상각;심상인;강병화;이학수;석영선
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.18-23
    • /
    • 1997
  • The study was carried out to clarify reasonable production of healthy seedling, optimal Pot depth, and appropriate transplanting time, which can be deduced from understanding of seedling quality. Seedling quality results from growth of root and shoot, morphology and distribution of root system under influence of Pot depth during seedling growing period. Stem height, shoot dry weight, leaf area and leaf number were increased in proportion to depth of pots. Growth of shoot and root during seedling growing period showed the most dramatic development between 20th and 25th day after temporary planting. Root number increased as pot depth decrease and total root length and dry weight increased as pot depth increase. In 5cm pot, relative multiplication rate was higher and mean extension rate was lower than other depth of Pot. The limitation of pot volume in which rhizosphere was located enhance the development of roots of second and third order. At 20th days after temporary Planting root distribution was relatively uniform in length and development of adventitious root on stem base was poor as Pot depth decreased.

  • PDF

Effect of Seedling Characters on the Growth of Ginseng Plant on Field. .1. Relationship between Seedling Weight and the growth of ginseng plant on field. (묘삼의 소질이 본포에서의 생육에 미치는 영향 제 3보 황삼의 중량과 본포5.6연근의 인삼생육과의 관계)

  • 이성식;천성용;김오태;이창화
    • Journal of Ginseng Research
    • /
    • v.8 no.1
    • /
    • pp.57-64
    • /
    • 1984
  • In order to clarify an effect of seedling weight on the growth pattern of ginseng, seedlings ranged from 0.4g plant to 1.8g plant were transplanted, and then the characters of 5- and 6-year-old ginseng were investigated. The characters of root and leaf, such as length and diameter of main root, root weight, leaf area, and leaf dry weight of 5- and 6-year-old ginseng originated from large seedlings were superior as compared with those from small seedlings, and percentage of missing plant was increased with the increase of seedling weight. There were, however, no significant difference in stem length, stem dry weight, number of seeds per plant and number of palmate leaves and leaflets per plant in 5- and 6-year-old ginseng and these characters were not affected by the weight of seedings transplanted. Root field per unit area was higher in seedings of above 0.6g/plant than in small seedlings.

  • PDF

Effect of Carbenicillin on Callus Induction and Regeneration Efficiency of Tissues of Horseradish(Armoracia rusticana)

  • Bae, Chang-Hyu
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • The effect of carbenicillin on the dedifferentiation and the regeneration efficiency of plant tissues of horseradish(Armoracia rusticana) was evaluated, Inhibition effect for callus initiation was observed when leaf blade, root and petiole segments were grown on MS medium containing 500 mg/L to 2000 mg/L carbenicillin and 0.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). The regeneration of horseradish shoots from leaf blade, root and petiole explants were decreased as the addition of carbenicillin increased from 1000 mg/L to 2000 mg/L in MS medium containing 0.5 mg/L of 6-benzylaminopurine (BAP) or kinetin. Especially, 500 mg/L carbenicillin treatment significantly inhibited shoot induction when leaf blade explants were grown on hormone-free MS medium. It was suggested that the toxic effects of combinations of carbenicillin and 2,4-D may be due to high auxin activity levels.

  • PDF

The Study for Efficacy, Effect and Stabilization of Trichosanthes Kirilowii Root, Prunella Vulgaris Leaf and Clematis Chinensis Root as a New Whitening Ingredients (새로운 미백제인 천화분근, 하고초엽, 위령선근의 효능, 효과 및 안정화에 대한 연구)

  • 지홍근;최정식;이순근;조용백;표성수;한창균;김주현;정기원;윤세준
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.123-128
    • /
    • 2004
  • Numerous novel ingredients have been introduced for the higher functionality of whitening cosmetics. Through the preliminary research, we have found Trichosanthes kirilowii root, Prunella vulgaris leaf and Clematis chinensis root have high whitening efficacy. But they are insoluble. Moreover the discoloration of and decrease in content take place when they are exposed to light, heat or oxygen. From Trichosanthes kirilowii root, Prunella vulgaris leaf and Clematis chinensis root, efficacious ingredients were ethanol-extracted by heating to 75∼85$^{\circ}C$ for 6∼8 h. These extracts have the inhibitory activity of tyrosinase and B16 melanin formation, thus enhancing whitening effect. We made liposomes using propylene glycol (PG)/hydrogenated lecithin/middle chain triglycerides (MCT)/glycerin/water and microfuidizer to stabilize extracts. The stability against heat and light was enhanced by 3∼5 times compared with untreated extracts. Particle size analyzer, freeze fracture transmission electron microscopy (FF-TEM), chromameter and HPLC are used for the analysis.

Inhibition Effects Against Plant Pathogenic Fungi and Plant Growth Promotion by Beneficial Microorganisms (유용 미생물을 활용한 식물 병원 곰팡이의 억제와 식물 생장촉진 효과)

  • Jung, Jin Hee;Kim, Sang Woo;Kim, Yun Seok;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.118-126
    • /
    • 2013
  • The experiment was carried out to analyze the inhibition effect of plant pathogenic fungi and growth promotion activity induced by the bacterial strains isolated from peatmoss. Among the isolated bacterial strains, B10-2, B10-4, B10-5 and B10-6 which showed more than 30% inhibition rate against Botrytis cinerea and Rhizoctonia solani in vitro, were further analyzed in the greenhouse for the growth promotion activity on lettuce (Lactuca sativa), pak-choi (Brassica compestris L. ssp. chinensis) and Chinese cabbage (Brassica campestris L. ssp. pekinensis). The results showed the treatment of B10-4 on lettuce showed the highest growth promotion activity with the leaf area ($169.17cm^2$), fresh weight (leaf: 40.29 g, root: 8.80 g)and dry weight (leaf: 11.24 g, root: 4.17 g), which was about two folds as compared to control. On pak-choi, the growth promotion rate was the highest with the leaf area of $112.87cm^2$, leaf fresh weight of 60.70 g, root fresh weight of 3.37 g, leaf dry weight of 14.34 g, and root dry weight of 1.90 g. As a result of treatment of B10-13 on chinese cabbage, the growth promotion rate was the highest with the leaf area ($293.56cm^2$), fresh weight (leaf: 113.67 g, root: 2.40 g) and dry weight (leaf: 6.03 g, root: 0.53 g). The production of Indole Acetic Acid (IAA) and Indole-3-Butylic Acid (IBA) were also analyzed in these bacterial isolates. The IAA and IBA analyses were carried out in all bacterial isolates each day within the 5 days of incubation period. The highest production of IAA was observed with $112.57{\mu}g/mg$ protein in B10-4 after 3 days of incubation and IBA production was the highest in B10-2 with $58.71{\mu}g/mg$ protein after 2 days of incubation. Also, phosphate solubilizing activity was expressed significantly in B10-13 in comparison to that of other bacterial isolates. Bacterial identification showed that B10-2 was Bacillaceae bacterium and B10-5 was Bacillus cereus, B10-4 and B10-6 were Bacillus sp. and B-13 was Staphylococcus sp. by ITS sequence.

Bacterial Root Rot and Bacterial Leaf Blght of Ficus spp. by Pseudomonas cichorii and P. viridiiflava in Korea (Pseudomonas cichorii와 P.viridiflava에 의한 Ficus 속 식물의 세균성뿌리썩음병 및 세균성잎마름병)

  • 이은정;차재경;최재을
    • Research in Plant Disease
    • /
    • v.6 no.1
    • /
    • pp.6-9
    • /
    • 2000
  • Nine samples of soft rotten roots and blighted leaves of Ficus spp. plants were collected from the vinyl-houses in Taejeon, Seongnam, Suweon and Yangjae in 1988 and pathogenic bactea were isolated from them Results of the studies on morphological, cultural, physiologucal and pathological characteristics indicated that the bacteria from Ficus retusa were Pseudomonas cichorii, from Ficus retusa \`Golden leaf\` and Ficus benjamina were P.viridiflava. These are the first description of bacteria which caused the diseases on Ficus spp. in Korea. We proposed to name the disease of Ficus retusa by P. cichorii as \"bacterial root rot of Ficus retusa\" and Ficus retusa(Golden leaf) and Ficus benjamina by P. viridiflava as \"bacterial leaf blight of Ficus retusa (Golden leaf)\", \"bacterial blight of Ficus benjamina\", respectively.

  • PDF

Phytotoxicity and DPPH Radical Scavenging Activity of Barley Seedling Extracts

  • Chon Sang-Uk;Kim Young-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.322-328
    • /
    • 2006
  • A series of methanol extracts from leaf and root parts in spring- and winter-barley plants were assayed to determine their allelopathy and antioxidant activity. The methanol extracts applied on filter paper in a Petri-dish significantly inhibited root growth of Chinese milkvetch (Astragalus sinicus L.) seedlings. Leaf extracts at 25 and 50 g $L^{-1}$ inhibited root growth of Chinese milkvetch seedlings more than root extracts. No difference in phytotoxic effects of spring- and winter-barley seedlings extracts on root growth of Chinese milkvetch was observed. Methanol extracts dose-dependently increased DPPH free radical scavenging activity in vitro. DPPH free radical scavenging activity was higher in the methanol extracts from winter-barley seedlings than in those from spring-barley seedlings, and from leaf extracts than from root extracts. The antioxidant potential of the individual fraction from the methanol extracts of spring-barley seedlings was in order of n-butanol>ethyl acetate>water>chloroform>n-hexane fraction. By means of HPLC analysis, spring-barley (200.62 mg $100g^{-1}$) had more amount of total phenol acid than winter-barley (114.08 mg $100g^{-1}$). Especially, ferulic acid was detected in spring-barley extract (183.46 mg $100g^{-1}$) as the greatest amount. These results suggest that early seedlings of barley plants had potent allelopathy and antioxidant activity, and their activities were differently exhibited depending on plant parts and growing condition.

Shading Effect on Rice Growth Characters

  • Woon-Ha Hwang;Hoe-Jeung Jeung;Myeong-Gue Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.135-135
    • /
    • 2022
  • For abnormal weather disaster and building constructions, the shading stress could occur in crops more often. Those shading stress can effect on rice growth characters. Therefore, we investigated the shading effect on rice growth characters. Shading treatments were treated using shading screen as 35, 55, 75 and 100%. To check the shading effect on rooting after transplanting, shading stress treated after transplanting for 20 days as 35, 55 and 75%, And 35, 55, 75 and 100% of shading were treated 60 days after transplanting to check the growth characters. After transplanting, the shading stress effected on leaf and root growth. At 19 days after transplanting, leaf number reduced by shading stress. In 35, 55 and 75% shading stress, the leaf number reduced as 0.38, 0.45 and 0.9 respectively compared to control treatment. And root length was also reduced as 0.39, 0.6 and 1.93 cm respectively compared to control treatment. The plant height was slightly increased in 35 and 55% and reduced in 100%. Leaf growth speed per day was reduced as 0.0167 according to shading stress. And root growth speed also reduced as 0.0426 according to shading stress. The shading stress during vegetative stage effected on plant height and tiller number. In 35, 55 and 75% of shading stress, the plant height was slightly increased but it was reduced in 100%. Tiller number was significantly reduced by shading stress. According to 10% of shading stress, about 7% of the tiller number was reduced. However, leaf color did not change by the shading stress. The leaf area in 2nd to 4nd leaf from new leaf reduced as 297 and 1044 in 75 and 100% of shading stress and increased as 70 and 99 in 35 and 55%. These leaf area change was affected by both the length and width of the leaf.

  • PDF

Influence of pre-planting application of dolomite at various rates in coir-dust containing root media on the growth of red-leaf lettuce

  • Kim, Chang Hyeon;Choi, Jong Myung
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.176-185
    • /
    • 2016
  • This research was conducted to evaluate various levels of dolomitic lime incorporated as pre-planting fertilizers on the growth of red-leaf lettuce. To achieve this, three root media were formulated by mixing coir dust with expanded rice hull (CD+ERH, 8:2, v/v), carbonized rice hull (CD+CRH, 6:4, v/v), and ground pine bark (CD+GRPB, 6:4, v/v). During formulation, equal amounts of essential nutrients, except dolomitic lime, were incorporated into all root media and the levels of dolomitic lime were varied from 0 to $7.5g\;L^{-1}$ at 1.5 g increments. Seedlings of red-leaf lettuces at the 3rd leaf stage were transplanted into each medium treatment. Crop growths were measured 5 weeks after transplant and soil solutions were collected every week and analyzed for pH, EC, and nutrient concentrations. The treatments showing the heaviest fresh and dry weights in CD+ERH, CD+CRH, and CD+GRPB were 4.5 g, 4.5 g, and $7.5g\;L^{-1}$ of dolomite, respectively. The pHs of three root media yielding the highest crop growths were in the ranges of 6.4 to 7.1. These ECs in CD+CRH medium were around $1.0dS\;m^{-1}$ higher than those of CD+ERH and CD+GRPB when application rates of dolomitic lime were equal. $K^+$ concentrations were higher than $Ca^{+2}$ and $Mg^{+2}$ concentrations until week 2 in three root media. But $Ca^{+2}$ and $Mg^{+2}$ concentrations were higher than $K^+$ concentrations after week 3 in all root media. The concentrations of $PO_4{^{-3}}$ in all root media got abruptly lower until week 2. These results indicate that appropriate levels of dolomitic lime, as pre-planting nutrient charge fertilizers in CD+ERH and CD+GRPB media, are 4.5 and $7.5g\;L^{-1}$, respectively.