Phytotoxicity and DPPH Radical Scavenging Activity of Barley Seedling Extracts

  • Chon Sang-Uk (Callus Co. Ltd., TBI Center, Gwangju Institute of Science and Technology) ;
  • Kim Young-Min (Donguinara Co. Ltd., Biotechnology Industrialization Center, Dongshin University)
  • Published : 2006.09.01

Abstract

A series of methanol extracts from leaf and root parts in spring- and winter-barley plants were assayed to determine their allelopathy and antioxidant activity. The methanol extracts applied on filter paper in a Petri-dish significantly inhibited root growth of Chinese milkvetch (Astragalus sinicus L.) seedlings. Leaf extracts at 25 and 50 g $L^{-1}$ inhibited root growth of Chinese milkvetch seedlings more than root extracts. No difference in phytotoxic effects of spring- and winter-barley seedlings extracts on root growth of Chinese milkvetch was observed. Methanol extracts dose-dependently increased DPPH free radical scavenging activity in vitro. DPPH free radical scavenging activity was higher in the methanol extracts from winter-barley seedlings than in those from spring-barley seedlings, and from leaf extracts than from root extracts. The antioxidant potential of the individual fraction from the methanol extracts of spring-barley seedlings was in order of n-butanol>ethyl acetate>water>chloroform>n-hexane fraction. By means of HPLC analysis, spring-barley (200.62 mg $100g^{-1}$) had more amount of total phenol acid than winter-barley (114.08 mg $100g^{-1}$). Especially, ferulic acid was detected in spring-barley extract (183.46 mg $100g^{-1}$) as the greatest amount. These results suggest that early seedlings of barley plants had potent allelopathy and antioxidant activity, and their activities were differently exhibited depending on plant parts and growing condition.

Keywords

References

  1. Banwart, W. L., P. M. Porter, T. C. Granato, and J. J. Hassett. 1985. HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids. J. Chem. Ecol. 11 : 383-395 https://doi.org/10.1007/BF01411424
  2. Blosi, M. S. 1958. Antioxidant determinations by use of a stable free radical. Nature 26 : 1199-1200
  3. Borner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Botan. Rev. 26 : 393-424 https://doi.org/10.1007/BF02860808
  4. Branen, A. L. 1975. Toxicology and biochemistry of butylateed hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52 : 59-63 https://doi.org/10.1007/BF02901825
  5. Chon, S. U. and Y. M. Kim. 2004. Herbicidal Potential and Quantification of Suspected Al1elochemicals from 4 Grass Crop Extracts. J. Agron. Crop Sci. 190 : 145-150 https://doi.org/10.1111/j.1439-037X.2004.00088.x
  6. Chon, S. U., J. H. Coutts, and C. J. Nelson. 2000. Effects of light, growth media and seedling orientation on bioassays of alfalfa autotoxicity. Agron. J. 92 : 715-720 https://doi.org/10.2134/agronj2000.924715x
  7. Chung, I. M. and D. A. Miller. 1995. Effect of alfalfa plant and soil extracts on germination and seedling growth. Agron. J. 87 : 762-767 https://doi.org/10.2134/agronj1995.00021962008700040025x
  8. Deshpande, S. S., S. K. Sathe, and D. K. Salunkhe. 1984. Chemistry and safety of plant polyphenols, in: M. Freidman (Ed.), Nutritional and toxicological aspects of food safety. Plenum, New York. 457-495
  9. Dilday, R. H., J. Lin, and W. Van. 1994. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aus. J. Exp. Agricul. 34 : 907-910 https://doi.org/10.1071/EA9940907
  10. Fay, P. K. and W. B. Duke. 1977. An assessment of allelopathic potential in Avena germ plasm. Weed Sci. 25 : 224-228
  11. Frankie, E. N. 1980. Lipid oxidation. A review. Prog. Lipid Res. 19: 1-22 https://doi.org/10.1016/0163-7827(80)90006-5
  12. Hegde, R. S. and D. A. Miller. 1990. Allelopathy and autotoxicity in alfalfa: characterization and effects of preceding crops and residue incorporation. Crop Sci. 30 : 1255-1259 https://doi.org/10.2135/cropsci1990.0011183X003000060020x
  13. Hoult, A. H. C. and J. V. Lovett. 1993. Biologically active secondary metabolites of barley. III. A method for identification and quantification of hordenine and gramine in barley by high-performance liquid chromatography. J. Chem. Ecol. 19 : 2245-2254 https://doi.org/10.1007/BF00979661
  14. Kohl, W., B. Witte, and G. Hofle. 1983. Quantitative and qualitative HPLC-Analytik von Indolalkaloiden aus Catharanthus raseus-zellkulturen. Planta Med. 47 : 171-182
  15. Kwak, S. S. and K. U. Kim. 1984. Effects of major phenolic acids identified from barley residues on the germination of paddy weeds. Korean J. Weed Sci. 4 : 39-51
  16. Larson, R. A. 1988. The antioxidants of higher plants. Phytochemistry 27 : 969-978 https://doi.org/10.1016/0031-9422(88)80254-1
  17. Lee, Y. C., J. Y. Son, K. T. Kim, and S. S. Kim. 1994. Antioxidant activity of solvent extracts isolated from barley leaves. Kor. J. Food & Nutrition 7: 332-337
  18. Liu, D. L. and J. V. Lovett. 1990. Allelopathy in barley: Potential for biological suppression of weeds, in: Bassett, C. J., L. J. Whitehouse, and J.A. Zabiewicz (Eds.), Alternatives to the Chemical Control of Weeds, Proceedings of an International Conference, Rotorua, New Zealand, July 1989, Ministry of Forestry, FRI Bulletin 155, pp. 85-92
  19. Liu, D. L. and J. V. Lovett. 1993. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 19 : 2231-2243 https://doi.org/10.1007/BF00979660
  20. Markova, S. A. 1972. Experimental investigations of the influence of oats on growth and development of Erysimum cheiranthoides L. In: A. M. Grodzinsky (Ed.), Physiological-Biochemical Basis of Plant Interactions in Phytocenoses, Vol. 3, pp. 66-68, Naukova Dumka, Kiev. (In Russian, English summary)
  21. Molisch, H. 1937. Der Einfluss Einer Pflanze Auf die Andere - Allelopathie. Fischer, Jena, Germany
  22. Olofsdotter, M. and D. Navarez. 1996. Allelopathic rice for Echinochloa crus-galli control. p. 1175-1181. In: Proc. Int. Wide Control Conf., 2nd, Siagelse, Denmark. 25-28 June 1996. Dep. of Weed Control and Pestic. Ecology, Siagelse, Denmark
  23. Overland, L. 1966. The role of allelopathic substances in the 'smother crop' barley. Am. J. Bot. 53 : 423-432 https://doi.org/10.2307/2440341
  24. Putnam, A. R. and W. B. Duke. 1974. Biological suppression of weeds: Evidence for allelopathy in accessions cucumber. Science 185 : 370-372 https://doi.org/10.1126/science.185.4148.370
  25. Renaudin, J. P. 1984. Reversed phase high performance liquid chromatographic characteristics of indole, alkaloids from cell suspension cultures of Catharanthus roseus. Physiol. Veg. 23 : 152-170
  26. Rice, E. L. 1984. Allelopathy, 2nd ed. Academic Press, New York, 422 pp
  27. SAS (Statistical Analysis Systems) Institute. 2000. SAS/STAT user's guide. Version 7. Electronic Version. Cary, NC, USA
  28. Schuler, P. 1990. Natural antioxidants exploited commercially, in: B. J. F. Hudson, Food Antioxidants (Ed.), Elsevier Applied Science, London, pp. 99-191
  29. Stich, H. F., M. D. Rosin, C. H. Wu, and W. D. Powrie. 1981. A comparative genoxicity study of chlorogenic acid (3-O-caffeoylquinic acid). Mut. Res. 90 : 201-212 https://doi.org/10.1016/0165-1218(81)90001-X
  30. Wanasundara, P. K. J. P. D., F. Shahidi, and V. K. S. Shukla. 1997. Endogenous antioxidants from oil seeds and edible oils. Food Rev. International 13 : 225-292 https://doi.org/10.1080/87559129709541106
  31. Wanasundara, U. N. and F. Shahidi. 1994. Canola extracts as an alternative natural antioxidant for canola oil. J. Am. Oil Chem. Soc. 71 : 817-822 https://doi.org/10.1007/BF02540455
  32. Wu, H., J. Pratley, D. Lemerle, and T. Haig. 1999. Identification and evaluation of toxicity of rice root elongation inhibitors in flooded soils with added wheat straw. Soil Sci. plant Nut. 36 : 97-103
  33. Yoshida, T., K. Mori, T. Hatono, T. Okumura, I. Uehara, K. Komagoe, Y. Fujita, and T. Okuda, 1989. Studies on inhibition mechanism of anti oxidation by tannins and flavonoids. V. Radical-scavenging effects of tannins and related polyphenols on DPPH radical. Chem. Pharm. Bull. 37: 1919-1921 https://doi.org/10.1248/cpb.37.1919