• 제목/요약/키워드: roof systems

검색결과 216건 처리시간 0.024초

굴곡형 케이블-막 지붕 시스템의 비선형 해석 (Nonlinear Analysis of Curved Cable-Membrane Roof Systems)

  • 박강근;권익노;이동우
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.45-55
    • /
    • 2017
  • The objective of this study is to estimate the mechanical characteristics and nonlinear behaviors on the geometric nonlinear analysis of curved cable-membrane roof systems for long span lightweight roof structures. The weight of a cable-membrane roof dramatically can reduce, but the single layer cable-membrane roof systems are too flexible and difficult to achieve the required structural stiffness. A curved cable roof system with reverse curvature works more effectively as a load bearing system, the pretension of cables can easily increase the structural stiffness. The curved cable roof system can transmit vertical loads in up and downward direction, and work effectively as a load bearing structure to resists self-weights, snow and wind loads. The nonlinear behavior and mechanical characteristics of a cable roof system has greatly an affect by the sag and pretension. This paper is carried out analyzing and comparing the tensile forces and deflection of curved roof systems by vertical loads. The elements for analysis uses a tension only cable element and a triangular membrane element with 3 degree of freedom in each node. The authors will show that the curved cable-membrane roof system with reverse curvature is a very lightweight and small deformation roof for external loads.

Roof tile frangibility and puncture of metal window shutters

  • Laboy-Rodriguez, Sylvia T.;Smith, Daniel;Gurley, Kurtis R.;Masters, Forrest J.
    • Wind and Structures
    • /
    • 제17권2호
    • /
    • pp.185-202
    • /
    • 2013
  • The goal of this study was to investigate the vulnerability of roof tile systems and metal shutters to roof tile debris. Three phases addressed the performance of tile roof systems and metal shutters impacted by roof tile debris. The first phase experimentally evaluated the tile fragment size and quantity generated by a tile striking a tile roof system. The second phase experimentally quantified the puncture vulnerability of common metal panel shutter systems as a function of tile fragment impact speed. The third phase provided context for interpretation of the experimental results through the use of a tile trajectory model. The results provide supporting evidence that while metal panel window shutters provide significant protection against a prevalent form of windborne debris, these systems are vulnerable to tile fragment puncture in design level tropical cyclones. These findings correlate with field observations made after Hurricane Charley (2004).

개폐식 방사형 케이블 지붕 시스템의 역학적 특성 (Mechanical Characteristics of Retractable Radial Cable Roof Systems)

  • 박강근;이동우;최동일
    • 한국공간구조학회논문집
    • /
    • 제17권2호
    • /
    • pp.21-32
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics on the geometric nonlinear behavior of radial cable roof systems for long span retractable cable roof structures. The retractable roof is designed as a full control system to overcome extreme outdoor environments such as extreme hot or cold weather, strong wind or sunlight, and the cable roof greatly can reduce roof weight compared to other rigid structural system. A retractable cable roof system is a type of structures in which the part of entire roof can be opened and closed. The radial cable roof is an effective structural system for large span retractable roofs, the outer perimeter of the roof is a fixed membrane roof and the middle part is a roof that can be opened and closed. The double arrangement cables of a radial cable truss roof system with reverse curvature works more effectively as a load bearing cables, the cable system can carry vertical load in up and downward direction. In this paper, to analyze the mechanical characteristics of a radial cable roof system with central posts, the authors will investigate the tensile forces of bearing cables, stabilized cables, ring cables, and the deflection of roof according to the height of the post or hub that affects the sag ratio of cable truss. The tensile forces of the cables and the deflection of the roof are compared for the cases when the retractable roof is closed and opened.

NPV-BASED 3D ARRAY DESIGN SYSTEM OF ROOF-TOP PHOTOVOLTAICS

  • Kim Se-Jong;Cho Dong-Hyun;Park Hyung-Jin;Yoon Hee-Ro;Koo Kyo-Jin
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.300-303
    • /
    • 2013
  • On BIPV systems, especially roof-top PV systems, the power generation is easier to be reduced due to the shades of facilities nearby, or roof itself. To secure profitability of roof-top PV systems, the optimal design of solar arrays through the precise shading analysis is an important item of design considerations. In this paper, an optimization system for array design of roof-top PVs is to be developed using three-dimensional Geospatial Information System(GIS). The profitability of income and expense is considered through the shading analysis of entire roofs. By applying the system to project for validation, the adequacy and the improvement of NPV of the system were verified compared to expert's design. The system has significance by reason that PV modules are placed through rules established with expert knowledge and geometric rules were applied to reflect the constructability and maintainability.

  • PDF

축소모형을 이용한 지붕담수시스템을 활용한 아트리움 실내의 냉각효과에 관한 연구 (The Study on the Cooling Effects of the Atrium Interiors for the Roof Watering System by a Scaled Model)

  • 정유근
    • KIEAE Journal
    • /
    • 제9권6호
    • /
    • pp.51-56
    • /
    • 2009
  • The most important advantages of atrium buildings are to allow the abundant natural lighting and outside views. However, the abundant lighting frequently causes to increase a cooling load in summer. The roof watering systems are useful to reduce the cooling load and save the energy. This study aims to investigate the effects of the roof watering system in atrium through the scaled model experiments. For the study, the 1/20 scaled model was made and tests were performed under the clear sky conditions through August 24 to september 7 in 2008. The model size was $45{\times}45{\times}60(cm)$ and depth of roof water was 3(cm). As results, the thermal effects of two types of atrium(roof opening, and roof and front opening,) were evaluated through the experimental points and conditions. It is expected to use the results for the next research to develop the practical roof watering systems for atrium.

건축 옥상 방수 신기술의 동향 (A Trend of New Waterproofing System for Building Roof)

  • 우영제;조병영;신주재;김영근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.549-552
    • /
    • 2003
  • User's demand, as a maintenance for durability of construction and a comfortable life, and an incentive systems for new waterproofing system incite waterproofing company to evolve new waterproofing system that is upgraded waterproofing quality by getting advantages for the existing waterproofing systems. There are seven new waterproofing systems for building roof to be authorized from Ministry of construction & transportation. Those are multi-layers waterproofing system, and five of those are the insulation type. A trend of new waterproofing systems for building roof is multi-layers waterproofing system insulated.

  • PDF

Micro-flown 장비를 이용한 옥상녹화재료 음향 물성치 실험 (Using a Micro-flown device to measure acoustical properties of green roof systems)

  • 양홍석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.870-873
    • /
    • 2014
  • Green roof systems has widely been used on rooftop of buildings by considering environmental benefits in aspects of bio-diversity, storm-water runoff as well as noise reduction. To predict noise reduction effect by green roof systems, it is necessary to measure in-situ acoustical properties of the components by devices enabling in-situ measurements. In this study, Micro-flown, which is the state of the arts device to measure in-situ normalized impedance and absorption coefficient has been used to measure acoustical properties of green roof materials according to different water saturation condition in the materials.

  • PDF

고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구 (The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer)

  • 이현정;염동우;이규인
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.

Green Roof System의 다양한 성능 추구를 위한 공법 제시 및 성능 비교 실험 연구 (A Study of the Proposes of GRS Prototype for various purpose achievement and it's Efficiency Comparative Experiment)

  • 장대희;김현수;이건호;박창영
    • KIEAE Journal
    • /
    • 제6권2호
    • /
    • pp.59-66
    • /
    • 2006
  • Green Roof Systems are embossed that realize ecological architecture as a substantially alternative plan. So, a Purpose of the study is seeking to optimize expectation effect through the Green Roof System. we set possible object and propose the prototype on the basis of the existing Green roof System technologies. We visualize a proposed Prototype apply various materials and methods. and we analyse the effects of Green Roof System upon our City climate with use energy efficiency comparison the Green roof system with the Concrete Rooftop. We'll Provide the low data for The prospects of City climate improvement through the a ripple effect on Green Roof System and for activation of Green Roof Technology.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.