• Title/Summary/Keyword: roof parameters

Search Result 110, Processing Time 0.034 seconds

Spectral density functions of wind pressures on various low building roof geometries

  • Kumar, K. Suresh;Stathopoulos, T.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.203-223
    • /
    • 1998
  • This paper describes in detail the features of an extensive study on Spectral Density Functions (SDF's) of wind pressures acting on several low building roof geometries carried out in a boundary layer wind tunnel. Various spectral characteristics of wind pressures on roofs with emphasis on derivation of suitable analytical representation of spectra and determination of characteristic spectral shapes are shown. Standard spectral shapes associated with various zones of each roof and their parameters are provided. The established spectral parameters can be used to generate synthetic spectra adequate for the simulation of wind pressure fluctuations on building surfaces in a generic fashion.

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin;Zizheng Zhang;Weijian Yu;Min Deng
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

An Experimental Study on Placements and Thickness of Damping Material for Vibration Control of Automotive Roof (자동차 루프의 진동제어를 위한 제진재의 위치 및 두께에 대한 실험적 연구)

  • Lee, Jeong-Kyun;Kim, Chan-Mook;Sa, Jong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.31-37
    • /
    • 2005
  • This paper presents an experimental study on vibration characteristics of an automotive roof with damping material. The goal of the study is to extract modal parameters(natural frequency, loss factor, and mode shape) of automotive roof with damping materials treatment. To determine the effective positions and thickness of the damping material on a roof, vibration tests have been carried out for six cases; an aluminum plate with damping material on maximum strain energy positions, and an aluminum plate with damping material on nodal lines. From the result of aluminum plate, it is found that the damping material should be placed on the location with maximum strain energy part. For the automotive roof, patches of constrained damping material, which has two different density, have been attached to the positions of the maximum strain energy with four kinds of thicknesses. This paper shows that the proper positioning of the damping material is very important and the effective thickness is about twice that of the roof panel.

Parameter Study for Optimal Design of Smart TMD (스마트 TMD의 최적설계를 위한 파라메터 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

A Study on the Structural and Other Influential Characteristics of Western Timber Roof Truss in Modern Buildings - Focusing the Record of Modern Buildings among the Cultural Assets maintained by Public Institution - (근대 건축물에 사용된 서양식 목조 지붕 트러스의 구조요인 및 기타 영향요인에 관한 연구 - 공공기관이 관리하는 문화재 중 근대건축물 기록을 중심으로 -)

  • Lee, Yoon-Hee;Yu, Hye-Ran;Kwon, Ki-Hyuk
    • Journal of architectural history
    • /
    • v.20 no.4
    • /
    • pp.95-114
    • /
    • 2011
  • Western style timber roof trusses used as typical roof structures of buildings during a modern period have been developed with the interactions with their facade and functionality. The shapes of trusses and member sizes have been diversely changed by the purposes of architects, historical circumstances, and structural characteristics. For this reason, the change in the shapes of western style timber trusses along the times is one of important technology assets demonstrating the development of their structures during the modern period. Therefore, the purpose of this paper is to find out their structural characteristics throughout parametric analysis of which parameters were determined from the collected and classified documents on western style timber roof structure built in the modern period carefully obtained from public institutions. Results of the parametric analysis are as follows. The number of king-post trusses and modified king-post trusses built between 1920 and 1937 reaches almost half of the total number of truss types investigated. The mean values of their spans, distances, tributary areas, and height are respectively, 10.5m, 2.4m, $24.37m^2$and 3.24m. The cross-section areas of trusses tend to reduce since the city construction law was enacted in 1920. Also, this study found that western architects usually used larger structural members than eastern architects and usages and finishing materials of roof trusses are not always considered as one of the important design parameters.

Improvement and validation of a flow model for conical vortices

  • Ye, Jihong;Dong, Xin
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.113-144
    • /
    • 2014
  • Separation bubble and conical vortices on a large-span flat roof were observed in this study through the use of flow visualization. The results indicated that separation bubble occurred when the flow was normal to the leading edge of the flat roof. Conical vortices that occur under the cornering flow were observed near the leading edge, and their appearance was influenced by the wind angle. When the wind changed from along the diagonal to deviating from the diagonal of the roof, the conical vortex close to the approaching flow changed from circular to be more oblong shaped. Based on the measured velocities in the conical vortices by flow visualization, a proposed two-dimensional vortex model was improved and validated by simplifying the velocity profile between the vortex and the potential flow region. Through measured velocities and parameters of vortices, the intensities of conical vortices and separation bubble on a large-span flat roof under different wind directions were provided. The quasi-steady theory was corrected by including the effect of vortices. With this improved two-dimensional vortex model and the corrected quasi-steady theory, the mean and peak suction beneath the cores of the conical vortices and separation bubble can be predicted, and these were verified by measured pressures on a larger-scale model of the flat roof.

Introducing Strategy of Cool Roofs based on Comparative Evaluation of Foreign Cases (해외 사례분석을 통한 Cool Roof의 도입 방안)

  • Choi, Jin-Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.591-605
    • /
    • 2010
  • Cool roofs are currently being emerged as one of important mechanism to save energy in relation to the building. This paper reviews worldwide experiences (USA, Japan and EU etc) for the potential benefits cool roofs offer in relation to building energy saving for comparison purposes. It is confirmed that there is a significant potential to the energy saving by introducing the cool roof in a Korean climate because of similarity in terms of HDD (Heating Degree Day) and CDD (Cooling Degree Day) as those countries reviewed. Such a comparative study highlights that the type of measurements performed and the quantitative parameters reported from the countries should be standardized in Korean context in order to implement further comparable experiments for scientifically sound investigations. It is anticipated that this research output could be used as a valuable reference in implementing a Nation-wide cool roofing strategy in the central and local governments since a suitable technical, more objective direction has been proposed based on the measured, fully quantitative performance of the involved components of a cool roof system in the global context. From this critical review, a very important step has been made concerning the practicality of cool roof in Korean context. Ultimately, the suggestion in this paper will greatly contribute to opening new possibilities for introducing cool roof in this country, proposed as an initial aim of this paper.

Numerical simulation on strata behaviours of TCCWF influenced by coal-rock combined body

  • Cheng, Zhanbo;Pan, Weidong;Li, Xinyuan;Sun, Wenbin
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.269-282
    • /
    • 2019
  • Due to top-coal and immediate roof as cushion layer connecting with support and overlying strata, it can make significant influence on strata behaviors in fully mechanical top-coal caving working face (TCCWF). Taking Qingdong 828 working face as engineering background, $FLAC^{3D}$ and $UDEC^{2D}$ were adopted to explore the influence of top-coal thickness (TCT), immediate roof thickness (IRT), top-coal elastic modulus (TCEM) and immediate roof elastic modulus (IREM) on the vertical stress and vertical subsidence of roof, caving distance, and support resistance. The results show that the maximum roof subsidence increases with the increase of TCT and IRT as well as the decrease of TCEM and IREM, which is totally opposite to vertical stress in roof-control distance. Moreover, although the increase of TCEM and IREM leading to the increase of peak value of abutment pressure, the position and distribution range have no significant change. Under the condition of initial weighting occurrence, support resistance has negative and positive relationship with physical parameters (e.g., TCT and IRT) and mechanical properties (e.g., TCEM and IREM), respectively.

Parametric analysis of hybrid outrigger system under wind and seismic loads

  • Neethu Elizabeth Johna;Kiran Kamath
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.503-518
    • /
    • 2023
  • In tall constructions, the outriggers are regarded as a structural part capable of effectively resisting lateral loads. This study analyses the efficacy of hybrid outrigger system in high rise RCC building for various structural parameters identified. For variations in α, which is defined as the ratio of the relative flexural stiffness of the core to the axial rigidity of the column, static and dynamic analyses of hybrid outrigger system having a virtual and a conventional outrigger at two distinct levels were conducted in the present study. An investigation on the optimal outrigger position was performed by taking the results from absolute maximum inter storey drift ratio (ISDmax), roof acceleration (accroof), roof displacement (disproof), and base bending moment under both wind and seismic loads on analytical models having 40, 60 and 80 storeys. An ideal performance index parameter was introduced and was utilized to obtain the optimal position of the hybrid outrigger system considering the combined response of ISDmax, accroof, disproof and, criteria required for the structure under wind and seismic loads. According to the behavioural study, increasing the column area and outrigger arm length will maximise the performance of the hybrid outrigger system. The analysis results are summarized in a flowchart which provides the optimal positions obtained for each dependent parameter and based on ideal performance index which can be used to make initial suggestions for installing a hybrid outrigger system.

Internal and net roof pressures for a dynamically flexible building with a dominant wall opening

  • Sharma, Rajnish N.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.93-115
    • /
    • 2013
  • This paper describes a study of the influence of a dynamically flexible building structure on pressures inside and net pressures on the roof of low-rise buildings with a dominant opening. It is shown that dynamic interaction between the flexible roof and the internal pressure results in a coupled system that is similar to a two-degree-of-freedom mechanical system consisting of two mass-spring-damper systems with excitation forces acting on both the masses. Two resonant modes are present, the natural frequencies of which can readily be obtained from the model. As observed with quasi-static building flexibility, the effect of increased dynamic flexibility is to reduce the first natural frequency as well as the corresponding peak value of the admittance, the latter being the result of increased damping effects. Consequently, it is found that the internal and net roof pressure fluctuations (RMS coefficients) are also reduced with dynamic flexibility. This model has been validated from experiments conducted using a cylindrical model with a leeward end flexible diaphragm, whereby good match between predicted and measured natural frequencies, and trends in peak admittances and RMS responses with flexibility, were obtained. Furthermore, since significant differences exist between internal and net roof pressure responses obtained from the dynamic flexibility model and those obtained from the quasi-static flexibility model, it is concluded that the quasi-static flexibility assumption may not be applicable to dynamically flexible buildings. Additionally, since sensitivity analyses reveal that the responses are sensitive to both the opening loss coefficient and the roof damping ratio, careful estimates should therefore be made to these parameters first, if predictions from such models are to have significance to real buildings.