DOI QR코드

DOI QR Code

Numerical simulation on strata behaviours of TCCWF influenced by coal-rock combined body

  • Cheng, Zhanbo (School of Energy and Mining Engineering, China University of Mining and Technology-Beijing) ;
  • Pan, Weidong (School of Energy and Mining Engineering, China University of Mining and Technology-Beijing) ;
  • Li, Xinyuan (School of Energy and Mining Engineering, China University of Mining and Technology-Beijing) ;
  • Sun, Wenbin (College of Mining and Safety Engineering, Shandong University of Science and Technology)
  • Received : 2019.07.08
  • Accepted : 2019.10.22
  • Published : 2019.10.30

Abstract

Due to top-coal and immediate roof as cushion layer connecting with support and overlying strata, it can make significant influence on strata behaviors in fully mechanical top-coal caving working face (TCCWF). Taking Qingdong 828 working face as engineering background, $FLAC^{3D}$ and $UDEC^{2D}$ were adopted to explore the influence of top-coal thickness (TCT), immediate roof thickness (IRT), top-coal elastic modulus (TCEM) and immediate roof elastic modulus (IREM) on the vertical stress and vertical subsidence of roof, caving distance, and support resistance. The results show that the maximum roof subsidence increases with the increase of TCT and IRT as well as the decrease of TCEM and IREM, which is totally opposite to vertical stress in roof-control distance. Moreover, although the increase of TCEM and IREM leading to the increase of peak value of abutment pressure, the position and distribution range have no significant change. Under the condition of initial weighting occurrence, support resistance has negative and positive relationship with physical parameters (e.g., TCT and IRT) and mechanical properties (e.g., TCEM and IREM), respectively.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, China University of Mining & Technology

References

  1. Alehossein, H. and Korinets, A. (2000), "Mesh-independent finite difference analysis using gradient-dependent plasticity", Commun. Numer. Meth. Eng., 16(5), 363-375. https://doi.org/10.1016/j.ijrmms.2004.08.007.
  2. Alehossein, H. and Poulsen, B.A. (2010), "Stress analysis of longwall top coal caving", Int. J. Rock Mech. Min. Sci., 47(1), 30-41. https://doi.org/10.1016/j.ijrmms.2009.07.004.
  3. Alejano, L.R., Ramirez-Oyanguren, P. and Taboada, J. (1999), "FDM predictive methodology for subsidence due to flat and inclined coal seam mining", Int. J. Rock Mech. Min. Sci., 36, 475-491. https://doi.org/10.1016/S0148-9062(99)00022-4.
  4. Basarir, H., Oge, I.F. and Aydin, O. (2015), "Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis", Int. J. Rock Mech. Min. Sci., 76, 88-97. https://doi.org/10.1016/j.ijrmms.2015.03.001
  5. BP (2018), "BP Statistical review of world energy", British Petroleum, London, U.K.
  6. Cheng, Z.B., Li, L.H. and Zhang, Y.N. (2019), "Laboratory investigation of the mechanical properties of coal-rock combined body", Bull. Eng. Geol. Environ. https://doi.org/10.1007/s10064-019-01613-z.
  7. Cheng, Z.B., Zhang, Y.N., Li, L.H. and Lv, H.Y. (2018), "Theoretical solution and analysis of the elastic modulus and foundation coefficient of coal-rock combination material", Int. J. Mater. Sci. Res., 1(1), 23-31. https://doi.org/10.18689/ijmsr-1000104
  8. Guo, J., Feng, G., Wang, P., Qi, T., Zhang, X. and Yan, Y. (2018), "Roof strata behaviour and support resistance determination for ultra-thick longwall top coal caving panel: A case study of the Tashan coal mine", Energies, 11(5), 1041. https://doi.org/10.3390/en11051041.
  9. Hock, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  10. Itasca Consulting Group (2004), "UDEC2D universal distinct element code", Minneapolis, Minnesota, U.S.A.
  11. Itasca Consulting Group (2012), "FLAC3D 5.0 Manual", Minneapolis, Minnesota, U.S.A.
  12. Jirankova, E. (2012), "Utilisation of surface subsidence measurements in assessing failures of rigid strata overlying extracted coal seams", Int. J. Rock Mech. Min. Sci., 53, 111-119. https://doi.org/10.1016/j.ijrmms.2012.05.007.
  13. Kirzhner, F. and Rozenbaum, M. (2001), "Behavior of the working fluid in mechanized support in permafrost", J. Cold Reg. Eng., 15(3), 170-185. https://doi.org/10.1061/(ASCE)0887-381X(2001)15:3(170).
  14. Kong, D., Cheng, Z. and Zheng, S. (2019), "Study on failure mechanism and stability control measures in large-cuttingheight coal mining face with deep-buried seam", Bull. Eng. Geol. Environ., 1-15. https://doi.org/10.1007/s10064-019-01523-0.
  15. Lei, C., Yang, J.H., Song, G.F. and Zhang, K. (2016), "Calculation of weighting interval and real-time working resistance based on beam elastic foundation method", Electron. J. Geotech. Eng., 21(5), 1931-1942.
  16. Liu, F., Guo, Z., Lv, H. and Cheng, Z. (2018), "Test and analysis of blast wave in mortar test block", Int. J. Rock Mech. Min. Sci., 108, 80-85. https://doi.org/10.1016/j.ijrmms.2018.06.003.
  17. Liu, X.J. and Cheng, Z.B. (2019), "Changes in subsidence-field surface movement in shallow-seam coal mining", J. S. Afr. Inst. Min. Metall., 119, 201-206. https://doi.org/10.17159/2411-9717/2019/v119n2a12.
  18. Lv, H., Tang, Y., Zhang, L., Cheng, Z. and Zhang, Y. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.
  19. Marschalko, M., Bednarik, M., Yilmaz, I., Bouchal, T. and Kubecka, K. (2011), "Evaluation of subsidence due to underground coal mining: an example from the Czech Republic", Bull. Eng. Geol. Environ., 71, 105-111. https://doi.org/10.1007/s10064-011-0401-8.
  20. Masri, M., Sibai, M., Shao, J.F. and Mainguy M. (2014), "Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale", Int. J. Rock Mech. Min. Sci., 70(9), 185-191. https://doi.org/10.1016/j.ijrmms.2014.05.007.
  21. Pan, W., Nie, X. and Li, X. (2019), "Effect of premining on hard roof distress behavior: a case study. Rock Mechanics and Rock Engineering", Rock Mech. Rock Eng., 52(6), 1871. https://doi.org/10.1007/s00603-018-1657-0.
  22. Sasaoka, T., Takamoto, H., Shimada, H., Oya, J., Hamanaka, A. and Matsui, K. (2015), "Surface subsidence due to underground mining operation under weak geological condition in Indonesia", J. Rock Mech. Geotech. Eng., 7(3), 337-344. https://doi.org/10.1016/j.jrmge.2015.01.007.
  23. Schweitzer, R. (1977), "Thick seam winning methods in French coal mines", Proceedings of the International Symposium on Thick Seam Mining, Dhanbad, India, May.
  24. Suchowerska, A.M., Carter, J.P. and Hambleton, J.P. (2015), "Geomechanics of subsidence above single and multi-seam coal mining", J. Rock Mech. Geotech. Eng., 8, 304-313. https://doi.org/10.1016/j.jrmge.2015.11.007.
  25. Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.
  26. Vakili, A. and Hebblewhite, B.K. (2010), "A new cavability assessment criterion for longwall top coal caving", Int. J. Rock Mech. Min. Sci., 47(8), 1317-1329. https://doi.org/10.1016/j.ijrmms.2010.08.010.
  27. Wang, J., Yang, S., Li, Y. and Wang, Z. (2015), "A dynamic method to determine the supports capacity in longwall coal mining", Int. J. Min. Reclam. Environ., 29(4), 277-288. https://doi.org/10.1080/17480930.2014.891694.
  28. Wang, J., Yang, S., Li, Y., Wei, L., and Liu, H. (2014), "Caving mechanisms of loose top-coal in longwall top-coal caving mining method", Int. J. Rock Mech. Min. Sci., 71, 160-170. https://doi.org/10.1016/j.ijrmms.2014.04.024.
  29. Xie, G.X., Chang, J.C. and Yang, K. (2009), "Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face", Int. J. Rock Mech. Min. Sci., 46(1), 172-181. https://doi.org/10.1016/j.ijrmms.2008.09.006.
  30. Xie, H., Chen, Z., and Wang, J. (1999), "Three-dimensional numerical analysis of deformation and failure during top coal caving", Int. J. Rock Mech. Min. Sci., 36(5), 651-658. https://doi.org/10.1016/s0148-9062(99)00027-3.
  31. Xie, Y.S. and Zhao, Y.S. (2009), "Numerical simulation of the top coal caving process using the discrete element method", Int. J. Rock Mech. Min. Sci., 46(6), 983-991. https://doi.org/10.1016/j.ijrmms.2009.03.005.
  32. Yang, T., Liu, J., Finklea, H., Lee, S., Epting, W.K., Mahbub, R., Hsu, T., Salvador, P.A., Abernathy, H.W. and Hackett, G.A. (2018), "An efficient approach for prediction of Warburg-type resistance under working currents", Int. J. Hydrogen Energy, 43(32), 15445-15456. https://doi.org/10.1016/j.ijhydene.2018.06.076.
  33. Yasitli, N.E. and Unver, B. (2005), "3D numerical modeling of longwall mining with top-coal caving", Int. J. Rock Mech. Min. Sci., 42(2), 219-235. https://doi.org/10.1016/j.ijrmms.2004.08.007.
  34. Zhang, Y., Cheng, Z. and Lv, H. (2019). "Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions", Geomech. Eng., 18(1), 97-109. https://doi.org/10.12989/gae.2019.18.1.97.

Cited by

  1. Laboratory investigation of the mechanical properties of coal-rock combined body vol.79, pp.4, 2019, https://doi.org/10.1007/s10064-019-01613-z
  2. Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2019, https://doi.org/10.12989/sem.2021.79.2.237
  3. The Comprehensive Identification of Roof Risk in a Fully Mechanized Working Face Using the Cloud Model vol.9, pp.17, 2021, https://doi.org/10.3390/math9172072