• Title/Summary/Keyword: rolling process

Search Result 912, Processing Time 0.023 seconds

Design Optimization on End Coupling as a Power Transmission Component for Aluminum Hot Rolling Process (알루미늄 열간 압연공정의 동력 전달용 커플링에 대한 최적화 설계)

  • Lee, Hyun-Seung;Lee, Young-Shin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The End Coupling is main component of the aluminum hot roll process. The End Coupling is used for transmission of rotational power with heavy-duty load. Fracture of the End Coupling cause serious economic losses because an End Coupling is a very expensive component and it takes a long time to repair it. Therefore, preventing the destruction of the End Coupling is essential for ensuring a long mechanical life cycle. In this paper, the parametric study on the End Coupling was performed in order to minimize maximum stress under operation loads. To verify the interference of spindle assembly with modified End Coupling, kinematics simulation was performed by applying the various combination type and dynamic boundary condition of the spindle assembly. The interference of optimized model was not occurred during combination process and driving process. As a result of an optimum design for life extension on End Coupling, the maximum stress of modified End Coupling was lower than that of the initial model by 26%.

The development and application of on-line model for the prediction of roll force in hot strip rolling (얼간 사상 압연중 압하력 예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

Plastic Strain Ratios of Asymmetry Rolled Aluminum Sheets (비대칭 압연 알루미늄의 소성변형비)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.425-426
    • /
    • 2007
  • The physical and mechanical properties of the sheets metals are closely related to the presence of preferred crystallographic orientations which were produced by the manufacturing process. To obtain the aluminum alloys sheets with good Al sheet formability, the plastic strain ratio (or r-value) of AA1050 Al sheets after asymmetric rolling and subsequent heat treatment was studied. The AA1050 aluminum alloy sheets after asymmetric rolling with high reduction ratio and following heat treatment had the higher plastic strain ratio.

  • PDF

Analysis of Residual Stress and Etching Curl of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력과 변형 해석)

  • 정호승;조종래;문영훈;김교성
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • The cold rolling conditions for the ultra thin steel for tension mask are very important because the residual stress that affects the flatness of strip is generate during the cold rolling. The residual stress in the sheet causes etching curls when it suffers perforation process. The residual stress through the thickness. To estimate the residual stress and deformation due to etching curl. FEM analysis is performed. Numerical simulation employ a ANSY5 5.6 and an elastic-plastic constitutive equation. The simulation results indicate the distribution of residual stress in the rolled sheet can be controlled by selecting the rolling conditions properly.

Light Weight by Application of Aluminum Honeycomb Sandwich Panels in End Door of Rolling Stock (알루미늄 하니컴 샌드위치 판재를 적용한 철도차량 통로문의 경량화)

  • 정남용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.284-291
    • /
    • 1997
  • Many papers have been conducted on the applications of honeycomb sandwich maintenance, and to improve the high speed and light weight in rolling stocks, aircrafts and so on. The end door of rolling stock is generally made of rolled steel or stainless steel. Thus, the weight of these materials are heavier than of nonferrous metals and thermal deformation by welding or complexity of manufacturing process is occurred. Therefore, this paper is aimed to develop the light weight by application of end door which is made of aluminum honeycomb sandwich panels in rolling stocks and to propose the standards of design and evaluation for its adhesively bonded strength.

  • PDF

Framework Development for Fault Prediction in Hot Rolling Mill System (열간 압연 설비의 고장 예지를 위한 프레임워크 구축)

  • Son, J.D.;Yang, B.S.;Park, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.199-205
    • /
    • 2011
  • This paper proposes a framework to predict the mechanical fault of hot rolling mill system (HRMS). The optimum process of HRMS is usually identified by the rotating velocity of working roll. Therefore, observing the velocity of working roll is relevant to early know the HRMS condition. In this paper, we propose the framework which consists of two methods namely spectrum matrix which related to case-based fast Fourier transform(FFT) analysis, and three dimensional condition monitoring based on novel visualization. Validation of the proposed method has been conducted using vibration data acquired from HRMS by accelerometer sensors. The acquired data was also tested by developed software referred as hot rolling mill facility analysis module. The result is plausible and promising, and the developed software will be enhanced to be capable in prediction of remaining useful life of HRMS.

Grease Life and Degradation Characteristics in Rolling Bearing Lubrication (특성별 그리이스의 수명과 열화특성 연구)

  • 김상근;박창남;한종대
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.280-284
    • /
    • 2003
  • High performance characteristics are required for rolling bearings and the various functions of bearing are greatly influenced by grease. Recently, higher performance is being demanded of rolling bearing greases for bearing lubrication. Four special greases with different composition such as lithium soap/ester oil, urea/ester oil, urea/ether oil and PTFE/fluorine oil were synthesized to compare the performance of these greases with that of the conventional lithium soap/mineral oil grease. The grease properties were investigated using a series of typical grease testing methods and grease life test. After the life test, the greases were charaterized by FTIR analysis and a microscope. And the iron amount in the greases was analyzed by AAS after ashing. The composition and manufacturing process determined the grease performance. The grease with a base oil of synthetic oil showed higher performance and the urea/ester oil and PTFE/fluorine oil showed about three times longer life as compared with conventional lithium grease.

Development of Set-up Model for Elongation Control in Steel Skin Pass Mill (조질압연에서의 연신율제어를 위한 set-up 모델 개발)

  • 이원호
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The mathematical set-up model was developed to reduce the mechanical property deviation in annealed and slightly rolled steel strip. The mechanical peculiarities of skin pass rolling process, such as high friction value and non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation zone are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The strip restricted deformation zone near the neutral point is also considered. It was revealed that the new model has better accuracy than present regression model by statistical analysis with actual mill rolling data.

  • PDF

Development of Signal Monitoring and Analyzing System for Down Coiler in Rolling Process (열연 Down Coiler 센서 및 제어신호 시분석 시스템 개발)

  • 손붕호;임은섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.132-132
    • /
    • 2000
  • The reliability of EIC systems in hot rolling mill is indispensable and very important in order to maintain stable production. Signals obtained from sensors and control system should be analyzed to monitor the condition of down coiler in hot rolling mill. We develope a monitoring system of down coiler which is composed of three parts (1) data acquisition and MMI (2) signal processing and analyzing, and (3) automatic data saving. Also it is designed to enable to inform users the abnormal conditions of down coiler. This developed system is expected to make it possible to reduce long downtime, secure high facility precision, and maintain high control levels.

  • PDF

Kinetics of Recrystallization in Cold Rolled (냉간압연된 fcc 금속에서 재결정 속도에 관한 연구)

  • 조용상;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.150-156
    • /
    • 1996
  • The cold rolling of metal sheets leads to the formation of an inhomogeneous microstructure and texture. The type and sharpness of texture through the thickness and the degree of inhomogeneity depend on the friction between rolls the rolled material and the geometry of the rolling gap. In order to follow the effect of friction, two kinds of stecimens were prepared by applying with and without lubrication during the cold rolling. Although the deformed microstructure of the specimens rolled without lubrication was much inhomogenous than that of the specimens rolled with lubrication, the effect of lubrication on the cold rolling texture was not found. the recrystallization behavior was strongly dependent on the deformation process. Thus, the retardation of the recrystallization was observed in the specimens rolled without lubrication.

  • PDF