• Title/Summary/Keyword: rolling force model

Search Result 142, Processing Time 0.023 seconds

Development of Rollgap Simulator and Its Application to Draft Schedule Adjustment (롤갭 시뮬레이터의 개발과 패스스케쥴 개선)

  • Ahn Jaehwan;Lee Youngho;Lee In-Woo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.163-172
    • /
    • 2004
  • A fast, accurate model for calculating roll gap variables are critical to the implementation of computer based automation systems for cold rolling mills. Based on the work of Fleck and Johnson, rollgap simulator with non-circular arc model was developed using the influence function. This developed model is capable of predicting values of force, torque and slip which can be applied over the wide range of rolling conditions including cold rolling/DR/temper mill with high execution speed. Friction coefficient was obtained as a function of operation conditions through analyzing measured data. After combination of rollgap simulator with production strategy, draft schedule for No.3 RCM (Reversible Cold Rolling Mill) in Incheon works of Dongbu Steel was developed. This draft schedule will be installed in the setup computer of No.3 RCM replacing old Hitachi model.

  • PDF

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

Model for the prediction of Roll Force of Roughing Mill considering Width reduction (도그본 고려한 조압연 압연하중 예측모델 개발)

  • Kwak, W.J.;Lee, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.223-225
    • /
    • 2007
  • Online models predicting roll force and forward slip of roughing mill was developed using nondimensional parameters. Using the effective inlet thickness, roll force model take into account the effect of inlet dog-bone shape of slab which take places after width reduction through edger rolling in roughing mill. The prediction accuracy of the proposed model is examined through comparison with measurements.

  • PDF

The development and application of on-line model for the prediction of roll force in hot strip rolling (얼간 사상 압연중 압하력 예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

New FE On-line Model (실시간 압연하중 및 압연동력 예측 모델의 개선)

  • 김영환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.52-55
    • /
    • 2000
  • Investigated via a series of finite element process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the strip in hot strip rolling. Then on the basis of these parameters an on-line model is derived for the precise prediction of roll and roll power. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

Development of Set-up Model for Elongation Control in Steel Skin Pass Mill (조질압연에서의 연신율제어를 위한 set-up 모델 개발)

  • 이원호
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The mathematical set-up model was developed to reduce the mechanical property deviation in annealed and slightly rolled steel strip. The mechanical peculiarities of skin pass rolling process, such as high friction value and non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation zone are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The strip restricted deformation zone near the neutral point is also considered. It was revealed that the new model has better accuracy than present regression model by statistical analysis with actual mill rolling data.

  • PDF

Improvement of Rolling Force Estimation by Modificaiton Function for Hot Steel Strip Rolling Process (보정함수를 이용한 강판의 열간 압연하중 예측 정도향상)

  • 문영훈;이경종;이필종;이준정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1193-1201
    • /
    • 1993
  • A new deformation resistance model for hot steel strip rolling process was formulated to improve the accuracy of roll force estimation. To improve the existing deformation resistance model more precisely, a modification function was introduced in this study. For the modification function, several factors considering material and operational conditions have been investigated and the optimal modification function was determined under the principle of minimum variability. The newly formulated modification function was applied to the deformation resistance model for ultra-low carbon steel and showed improved accuracy with about 30% decrease in terms of standard deviation of predicted roll force values against measured ones.

J-integral for subsurface crack in circular plate with inner hole under rolling and sliding contact (구름 및 미끄럼 접촉하의 중공원판의 표면하층균열에 대한 J-적분)

  • Lee, Kang-Yong;Kim, June-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1149-1155
    • /
    • 1997
  • J-integral for a subsurface horizontal crack in a circular plate with an inner hole under rolling line contact is evaluated according to loading positions with various load conditions, crack length and crack location. Two-dimensional crack is modeled, and the relation between Tresca stress for uncracked model and J-integral is discussed. The loading location which gives the maximum J-integral depends on load condition and crack location, and the presence of friction force increases Tresca stress and J-integral near the surface. Regardless of friction force, crack location that gives maximum J-integral is the same as that of maximum Tresca stress in an uncracked model, and the value of J-integral is propotional to crack length. It is also showed that the variation of an inner radius of a disk does not effect J-integral value.

Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process (Roll 수명예측모델에 의한 열연작업롤 진단)

  • Bae, Yong-Hwan;Jang, Sam-Kyu;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF

Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I)-Vibration Analysis- (Waviness가 있는 볼베어링으로 지지된 회전계의 동특성해석 (I) -진동 해석-)

  • Jeong, Seong-Weon;Jang, Gun-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2636-2646
    • /
    • 2002
  • This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modeled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian con tact theory is applied to calculate the elastic deflection and nonlinear contact force while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the nonlinear governing equations of the rotor, which are solved by using the Runge-Kutta-Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e. the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing but also between those of two or more ball bearings constrained by the rotor.