• Title/Summary/Keyword: rolling force model

Search Result 142, Processing Time 0.024 seconds

Sloped rolling-type bearings designed with linearly variable damping force

  • Wang, Shiang-Jung;Sung, Yi-Lin;Hong, Jia-Xiang
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.129-144
    • /
    • 2020
  • In this study, the idea of damping force linearly proportional to horizontal isolation displacement is implemented into sloped rolling-type bearings in order to meet different seismic performance goals. In addition to experimentally demonstrating its practical feasibility, the previously developed analytical model is further modified to be capable of accurately predicting its hysteretic behavior. The numerical predictions by using the modified analytical model present a good match of the shaking table test results. Afterward, several sloped rolling-type bearings designed with linearly variable damping force are numerically compared with a bearing designed with conventional constant damping force. The initial friction damping force adopted in the former is designed to be smaller than the constant one adopted in the latter. The numerical comparison results indicate that when the horizontal isolation displacement does not exceed the designed turning point (or practically when subjected to minor or frequent earthquakes that seldom have a great displacement demand for seismic isolation), the linearly variable damping force design can exhibit a better acceleration control performance than the constant damping force design. In addition, the former, in general, advantages the re-centering performance over the latter. However, the maximum horizontal displacement response of the linearly variable damping force design, in general, is larger than that of the constant damping force design. It is particularly true when undergoing a horizontal isolation displacement response smaller than the designed turning point and designing a smaller value of initial friction damping force.

Development of Flow Stress equation of High strength steel for automobile using Neural Network and Precision Roll Force Model (신경망 함수를 이용한 자동차강의 변형저항 개발 및 압연하중 예측)

  • Kwak W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.145-152
    • /
    • 2004
  • The flow stress value was calculated by comparing predicted and measured roll force. Using basic on-line roll force model and logged mill data the flow stress equation of high strength steel for automobile was derived. The flow stress equation consists of the flow stress equation of carbon steel and flow stress factor calculated by neural network with input parameters not only carbon contents, strip temperature, strain, and strain rate, but also compositions such as Mn, p, Ti, Nb, and Mo. Using the flow stress equation and basic roll force model, precision roll force model of high strength steel for automobile was derived. Using test set of logged mill data the flow stress equation was verified.

  • PDF

Characteristic Analysis and Selection of Process Parameters in Direct Rolling Processes (직접압연공정의 특성해석 및 공정변수 선정)

  • 박영준;조형석;이원호;강태욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.384-388
    • /
    • 1997
  • Recently,direct rolling process has been drawing increasing interests because production cost be greatly reduced by eliminating subsequent hot rolling processes. Such a process has been characterized to prosuce thin steel strip (thickness 1~5mm) directly from molten metal and to skip over the conventional hot rolling processes. However, since there are several process parameters, which affect the quality of product,and their relationship between the parametersare very complex,it is therefore very difficult to realize the process design and the quality control. To overcome these difficulties quantitative relationship between the parameters are investigated through a numerical analysis. Form these results, it is found that solidification final point is the most important paramter which is critical to quality of the strip. Also,the multiple regression model is obtianed to determine their relationship from the solidification final point and roll separating force which can be easily estimated

  • PDF

A Study on the Fault Diagnosis of the 3-D Roll Shape in Cold Rolling

  • Lee, Chang-Woo;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2174-2181
    • /
    • 2004
  • The metal processing system usually consists of various components such as motors, work rolls, backup rolls, idle rolls, sensors, etc. Even a simple fault in a single component in the system may cause a serious damage on the final product. It is, therefore, necessary to diagnose the faults of the components to detect and prevent a system failure. Especially, the defects in a work roll are critical to the quality of strip. In this study, a new 3-D diagnosis method was developed for roll shape defects in rolling processes. The new method was induced from analyzing the rolling mechanism by using a rolling force model, a tension model, the Hitchcock's equation, and measurement of the strip thickness, etc. Computer simulation shows that the proposed method is very useful in the diagnosis of the 3-D roll shape.

Prediction of Roll Force in Hot Grooveless Rolling of Billet (열간 빌렛의 평롤 압연시 압연하중 예측)

  • Byon, S.M.;Park, H.S.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1379-1382
    • /
    • 2007
  • In this paper, we present a simplified analytic approach for the prediction of roll force to be applicable to the grooveless rolling. The approach is based on the deformation shape deduced from physical considerations and employs the assumption that the deformation homogeneously occurs in three directions. Strain and strain rate are calculated by the geometric relationships between those components and the prescribed deformation functions. Then, stress components are obtained from the Levy-Mises' flow rule. By integrating the stress components along the rolling direction, roll force are finally obtained. The prediction accuracy of the proposed model is examined through comparison with results obtained from the finite element analysis.

  • PDF

Analytical and Numerical Investigation of Horizontal Force and Stable Position of Work Roll in Backup-Roll-Drive 4-High Cold-Rolling Mill (보강롤 구동 4 단 냉간압연기에서 작업롤의 수평하중 거동분석과 안정위치 결정을 위한 해석적 및 수치적 고찰)

  • Byon, Sang-Min;Lee, Jae-Hyeon;Park, Heung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.977-982
    • /
    • 2011
  • The horizontal force acting on a work roll was examined. This force results from the contact force between the work roll and backup roll in a backup-roll-drive 4-high cold-rolling mill. This horizontal force bends the work roll horizontally and therefore exerts reciprocal action on the roll-gap contour. An analytical model for predicting the horizontal force acting on a work roll, which generates a mean value in the steady state, was presented. The material used for the analysis was high-silicon steel (about 3% Si). A three-dimensional finite element (FE) model was also employed to investigate the non-steady-state behavior of the horizontal force. Results showed that the horizontal force varied with the off-center distance between the work roll and backup roll. In addition, the optimal off-center distance was determined to minimize the horizontal force.

Analysis of Tire Characteristics according to Driving Conditions using Finite Element Method (유한요소법을 이용한 구동상태에 따른 타이어의 특성 분석)

  • Jeon, Do-Hyung;Choi, Joo-Hyung;Cho, Jin-Rae;Kim, Kee-Woon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.539-544
    • /
    • 2004
  • This paper discusses the measurement of tire driving performance for 2 types of tire model. Tire is almost composed of rubber, and this is related with the bearing capacity of tire due to the external force. In this study, an explicit time integration method has been used to simulate steady state rolling along a straight path and over a cleat. And analysis for tire dynamic response rolling over a cleat is importnat to study automobile NVH properties. Besides, the evaluation of contact shear force is perfomed for steady state rolling and braking state. The results show that there are noticeable differences between 205/60R15 and 225/60R15 tire model.

  • PDF

Experimental Setup for Dynamic Analysis and Verification of Model Trains (모형기차의 동역학 해석 검증을 위한 실험장치 구성)

  • Tak, Tae-Oh;Kim, Suc-Tae
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.95-103
    • /
    • 2000
  • A model trains must have similitude with its original model not only in shape but also in motion. Motion characteristics of a model train under considerations are maximum velocity in straight and circular tracks and stopping distance. Equations of motions are derived to obtain maximum speed and stopping distance based on the Newton's Second Law and the energy principal. To accurately predict traction and resistance force between wheel and rail. wheel slip, or creepage, is taken into consideration. To verify the equations of motion, various experiments have been carried out including measurement of gear efficiency, location of mass center, rolling resistance force, traction force, slip, maximum velocity and stopping distance. This paper addresses how the experiments are setup and carried out in detail. Also the results of experiments are compared with the analytical prediction, which showed good agreements with each other.

  • PDF

A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments (회전하는 타이어의 접지면 동특성 예측에 관한 연구)

  • 김항우;황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1997
  • It is known that tire plays an important role to the dynamic performances of a vehicle such as noise, vibration, ride and handling. Therefore, force and moment measurements have been a part of the traditional tire engineering process. In this paper, a computational analysis technique has been explored. A FE model is made to simulate inflation, vertical load due to the vehicle weight, and the slow rolling of a radial tire. A rigid surface with Coulomb friction is included in the model to simulate the slow rolling contact. The tire slip during the in-plane motion of the rigid surface is calculated. Results are presented for both lateral and vertical loads, as well as straight ahead free rolling. The calculated and measured tire slips are in good correlation. A Study on slow Rolling Tire for perdiction of tire Forces and Moments.

  • PDF

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.