DOI QR코드

DOI QR Code

Analytical and Numerical Investigation of Horizontal Force and Stable Position of Work Roll in Backup-Roll-Drive 4-High Cold-Rolling Mill

보강롤 구동 4 단 냉간압연기에서 작업롤의 수평하중 거동분석과 안정위치 결정을 위한 해석적 및 수치적 고찰

  • Received : 2010.12.10
  • Accepted : 2011.07.01
  • Published : 2011.09.01

Abstract

The horizontal force acting on a work roll was examined. This force results from the contact force between the work roll and backup roll in a backup-roll-drive 4-high cold-rolling mill. This horizontal force bends the work roll horizontally and therefore exerts reciprocal action on the roll-gap contour. An analytical model for predicting the horizontal force acting on a work roll, which generates a mean value in the steady state, was presented. The material used for the analysis was high-silicon steel (about 3% Si). A three-dimensional finite element (FE) model was also employed to investigate the non-steady-state behavior of the horizontal force. Results showed that the horizontal force varied with the off-center distance between the work roll and backup roll. In addition, the optimal off-center distance was determined to minimize the horizontal force.

보강롤 구동 4 단 냉간압연기에서 작업롤과 보강롤 사이의 접촉력으로 인해 발생된 작업롤의 수평력을 고찰하였다. 본 수평력은 작업롤을 수평방향으로 휘게하고 롤갭 형상을 그 만큼 변화시킨다. 본 논문에서는 압연을 정상상태라고 가정하여 작업롤의 수평력을 예측할 수 있는 수식모델을 제시하였다. 해석에 사용된 소재는 고-실리콘(약 3%) 강판이었다. 수평력의 비-정상거동을 고찰하기 위해서 삼차원 유한요소모델을 채용하였다. 두 가지 모델을 이용하여 작업롤의 수평력은 보강롤의 중심으로부터 작업롤의 중심이 벗어난 길이에 따라 변한다는 결과를 얻었다. 그리고 작업롤의 수평력을 최소화 시킬 수 있는 작업롤의 최적 중심이탈 길이를 도출하였다.

Keywords

References

  1. Bland, D. A. and Ford, H., 1948, "The Calculation of Roll Force and Torque in Cold Strip Rolling With Tension," Proc. Inst. Mech. Eng., Vol. 159, pp. 144-153. https://doi.org/10.1243/PIME_PROC_1948_159_015_02
  2. Li, G. and Kobayashi, S., 1982, "Rigid Plastic Finite Element Analysis of Plane Strain Rolling," Trans. ASME, J. Engng. Ind., Vol. 104, pp. 55-63. https://doi.org/10.1115/1.3185797
  3. Lu, C. and Tieu, A. K., 2007, "Measurement of the Forward Slip in Cold Strip Rolling Using a High Speed Digital Camera," J. Mech. Sci. Tech., Vol. 21, pp. 1528-1533. https://doi.org/10.1007/BF03177370
  4. Hilbert, H. G., Roemmen, H. J. and Boucke, K. E., 1976, "MKW Cold Mill - Rolling Silicon Steel Strip," Iron and Steel Engineer, Sept., pp. 25-31.
  5. Chung, J. S., Byon, S. M., Kim, H. J. and Hwang, S. M., 2000, "Process Optimal Design in Metal Forming By Double Objective Genetic Algorithm," Trans. NAMRI/SME, Vol. 28, pp. 51-56.
  6. Espenhahn, M. and Giermann, G., 1988, "Modernization of a Cold Rolling Mill for High-Alloy Si Strips," Metall. Plant Technol., Vol. 11, pp. 70-76.
  7. Byon, S. M., Kim, S. I. and Lee, Y., 2008, "A Numerical Approach to Determine Flow Stress-Strain Curve of Strip and Friction Coefficient in Actual Cold Rolling Mill," J. Mater. Proc. Technol., Vol.201, pp. 106-111. https://doi.org/10.1016/j.jmatprotec.2007.11.188
  8. Hitchcock, J., 1935, Roll Neck Bearing, ASME Research Publication, Appendix 1.
  9. Ginzburg, V.B., 1989, Steel-Rolling Technology - Theory and Practice, Marcel Dekker Inc., New York and Basel.