• 제목/요약/키워드: roller compacted concrete (RCC) pavement

검색결과 15건 처리시간 0.02초

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

진동 전압 콘크리트의 실험실적 연구 (An Experimental Study on Roller Compacted Concrete)

  • 현석훈;김진춘;김병권
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.393-398
    • /
    • 1994
  • Roller compacted concrete(RCC) has been attracted due to its growing application to pavement concrete construction. In this study optimum mixing formation of RCC was explored and characterized its properties forcusing on reducing try and error for actual application to construction of pavement. The concrete used for roller compacted concrete pavement (RCCP) has very low water content per unit volume, so that it develops early high strength. This high early strength development makes pavement constructed open early. This concrete also showed very reduced crack formed on the surface because of expensive cement.

  • PDF

Study of the Anisotropy of the Roller Compacted Concrete (RCC) for Pavement

  • Zdiri, Mustapha;Abriak, Nor-edine;Ouezdou, Mongi Ben;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.45-49
    • /
    • 2010
  • The roller compacted concrete (RCC) is supposed to be isotropic, whereas the compaction of this material, which is achieved using the same machines used for the soil, appears only unidirectional, making the RCC an anisotropic material. In this experimental work, the influence of the phenomenon of compaction on the isotropy of the RCC is studied. This study was carried out through an evaluation of the compressive strengths and ultrasonic tests which were used for measurements of the elastic modulus and the dynamic Poisson's ratio of the RCC as well as a qualitative judgement of the RCC aspect at the hardened state. The results of this work proved the anisotropy of the RCC and they showed the sensitivity of the mechanical strengths and the elastic modulus to the compaction direction.

포장용 롤러전압콘크리트의 다짐도와 압축강도의 상관관계 분석 (Analysis of Relationship Between Compressive Strength and Compaction Ratio of Roller-Compacted Concrete Pavement)

  • 정건우;송시훈;이승우
    • 대한토목학회논문집
    • /
    • 제36권6호
    • /
    • pp.1117-1123
    • /
    • 2016
  • 롤러전압콘크리트포장 공법은 기존 시멘트 콘크리트 공법의 재료 특성 및 아스팔트 포장의 시공특성을 공유하는 포장 방식이다. 일반 시멘트 콘크리트 포장의 우수한 구조적 성능을 유지하면서, 아스팔트 시공 장비를 사용하여 간소한 시공절차로 경제성을 확보할 수 있다. 롤러전압콘크리트포장 공법은 수화반응과 롤러다짐에 의한 골재 맞물림 효과로 일반 시멘트 콘크리트 포장보다 적은 시멘트량을 사용하여도 충분한 강도를 발현할 수 있다. 또한 일반 시멘트 콘크리트 포장과 동등한 강도 특성을 발휘 할 수 있으며, 본 연구에서는 RCCP의 다짐도와 압축강도의 관계를 정량적으로 도출하고자 한다. 롤러전압콘크리트의 다짐에너지를 변화시키면서 다양한 다짐도를 갖는 시편을 제작하였다. 다짐도는 시편의 건조단위중량과 최대건조단위중량의 비로 정의하였으며, 다양한 다짐도로 성형된 시편의 28일 압축강도를 평가하였고, 다짐도에 따른 강도비의 관계를 도출 하였다. 따라서 롤러전압콘크리트 공법의 국내 현장적용을 위한 다짐도에 따른 강도비의 중요성을 부각하여 현장 다짐도 관리에 적용할 수 있을 것으로 판단된다.

복합포장용 고탄성 저수축 롤러전압콘크리트 기층 개발을 위한 기초연구 (A Preliminary Study on the Development of a High Elastic Modulus and Low-Shrinkage Roller-Compacted Concrete Base for Composite Pavement)

  • 정건우;이승우
    • 한국도로학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-52
    • /
    • 2017
  • PURPOSES : The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS : Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS : According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.

Prediction and Measurement of the Bending Strength of the RCC

  • Zdiri, Mustapha;Ouezdou, Mongi Ben;Abriak, Nor-edine;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.57-61
    • /
    • 2009
  • The present work deals with the prediction, through models and experimental evaluation, of the bending strength of roller compacted concrete (RCC) for pavement applications. This concrete was manufactured using low cement proportioning (150 to $250\;kg/m^3$). The characterization of hardened RCC was carried out by experimental measurements of bending strengths. The predictions of these characteristics were achieved using empirical models. Comparison, of the values found in experiments with those empirically obtained, was made in order to choose and to propose the adapted and the most reliable models of prediction. The study showed that the bending strengths of the RCC mixture, experimentally found, can be also identified by models.

Laboratory evaluation of roller compacted concrete containing RAP

  • Ahmadi, Amin;Gogheri, Mohammad K.;Adresi, Mostafa;Amoosoltani, Ershad
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.489-498
    • /
    • 2020
  • This paper investigates mechanical properties of roller compacted concrete (RCC) involving reclaimed asphalt pavement (RAP). In this way, a set of 276 cylindrical RCC specimens were prepared with different RAP sizes (i.e., fine, coarse & total) at various ratios (i.e., 10%, 20%, and 40%). Results reveal that incorporation of RAP decreases unconfined compressive strength (UCS), modulus of elasticity (E), and indirect tensile (IDT) strength of RCC. For each RAP size, a regression model was used to maximize RAP content while satisfying the UCS lower limit (27.6 Mpa) mentioned by ACI as a minimum requirement for RCC used in pavement construction. Moreover, UCS of RAP incorporated mixes, dissimilar to that of control mixes, was found to be sensitive and insensitive to the testing temperature and curing time after 7 days, respectively. The results also demonstrate that the higher amounts of RAP, the more flexibility in RCC is. This issue was also proved by the results of modulus of elasticity test. In addition, the toughness index (TI) shows that increase in RAP content leads to up to 43% increase in energy absorbance capacity of RCC.

롤러전압콘크리트 기층의 누적피로손상을 고려한 중하중 도로의 복합포장 두께 설계 (Thickness Design of Composite Pavement for Heavy-Duty Roads Considering Cumulative Fatigue Damage in Roller-Compacted Concrete Base)

  • 김경수;김영규;차이 리후워;이승우
    • 대한토목학회논문집
    • /
    • 제42권4호
    • /
    • pp.537-548
    • /
    • 2022
  • 중하중의 교통하중은 포장체에 과도한 응력과 변형을 발생시키므로 이에 대응할 수 있는 포장 단면 설계가 중요하다. 항만 배후도로와 산업도로는 일반도로에 비해 중하중 교통의 비율이 높아 포장의 조기 파손으로 인한 문제가 다수 발생되고 있다. 국외의 경우 중차량의 통행이 많은 도로의 포장설계는 복합포장을 많이 적용하고 있다. 복합포장은 기존 포장의 설계수명을 2배 이상 증대시켜 보수비용 및 사용자 비용을 절감할 수 있는 경제적 포장 형식으로 인식되고 있다. 본 연구에서는 중하중 교통의 비율이 높은 산업도로와 항만 배후도로의 포장 장기 공용성을 확보할 수 있도록 롤러전압콘크리트 기층을 활용한 복합포장의 두께 설계 방안을 제안하고자 한다. 3차원 유한요소해석을 이용하여 포장의 재료물성 변화에 따른 역학적 거동과 장기 공용성을 검토하였으며, 계절별 컨테이너 트레일러에 의해 발생되는 롤러전압콘크리트 기층의 누적피로손상도을 고려하여 사용자가 쉽게 사용할 수 있는 카탈로그 설계를 제안하였다.

Roller compacted concrete pavements reinforced with steel and polypropylene fibers

  • Madhkhan, Morteza;Azizkhani, Rasool;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.149-165
    • /
    • 2011
  • In this paper, the effects of both pozzolans and (steel and poly-propylene) fibers on the mechanical properties of roller compacted concrete are studied. Specimens for the experiments were made using a soil-based approach; thus, the Kango's vibration hammer was used for compaction. The tests in the first stage were carried out to determine the optimal moisture requirements for mix designs using cubic $150{\times}150{\times}150$ mm specimens. In the tests of the second stage, the mechanical behaviors of the main specimens made using the optimal moisture obtained in the previous stage were evaluated using 28, 90, and 210 day cubic specimens. The mechanical properties of RCC pavements were evaluated using a soil-based compaction method and the optimum moisture content obtained from the pertaining experiments, and by adding different percentages of Iranian pozzolans as well as different amounts of steel fibers, each one accompanied by 0.1% of poly-propylene fibers. Using pozzolans, maximum increase in compressive strength was observed to occur between 28 and 90 days of age, rupture modulus was found to decrease, but toughness indices did not change considerably. The influence of steel fibers on compressive strength was often more significant than that of PP fibers, but neither steel nor PP fibers did contribute to increase in the rupture modulus independently. Also, the toughness indices increased when steel fibers were used.