• Title/Summary/Keyword: roller bearing

Search Result 122, Processing Time 0.03 seconds

Experimental Study of the Effect of Shortening of Life of Tapered Roller Bearings when Subjected to Excessive Axial Pre-Load (과다 예압을 받는 테이퍼롤러 베어링의 수명단축효과에 대한 실험적 연구)

  • Park, Jong-Won;Kim, Hyoung-Eui;Kim, Jong-Ock;Sim, Yang-Jin;Jung, Won-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1161-1166
    • /
    • 2010
  • Tapered roller bearings are core components of rotating machine parts and are simultaneously subjected to axial and radial loads. Life-shortening effect was particularly evident in the case of tapered roller bearings used in the input and output shafts of transmission; this shortening of life was a result of excessive axial pre-load, which is common in the transmission assembly line. In this study, we derived an equation for evaluating the life of tapered roller bearings subjected to excessive pre-load by using accelerated life test data. The DOE(Design Of Experiment) method and FEA(Finite Element Analysis) was used for determining the condition for performing an accelerated life test. This equation for evaluating the service life of the bearings was derived by analyzing the Weibull distribution of the test results. Using the derived equation the life evaluated was 6-7 times longer than that evaluated by the conventional $L_{10}$ bearing-life equation. The results of this study will be helpful in predicting the life of tapered roller bearings subjected to excessive pre-load and in designing reliable rotating machines.

Automatic Diagnosis of Defects in Roller Element Bearings (롤러 베어링에서의 결함의 자동진단)

  • 유정훈;윤종호;김성걸;이장무
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.353-360
    • /
    • 1995
  • A new automatic diagnostic system for predicting multiple defects in rolling element bearings is developed by taking probbability into account. A database is constructed from the frequency characteristics of tested bearings with various types of defects. The proposed algorithms for the automatic diagnosis of bearing defects are shown to be satisfactory through the experiments. This method can be effectively used for quality control of the rolling bearing in plants.

  • PDF

III. 線接觸 摩擦機構를 이용한 윤활특성에 관한 연구(1)

  • 池昌憲;李種純;李奉九
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1986.06a
    • /
    • pp.21-25
    • /
    • 1986
  • 두 物體의 接蝕部에 있어서 윤활상의 向題는 아직 原因을 糾明하지 못한 것이 많다. 특히 선접식 마찰기구. 즉 壓延潤滑 등에서는 안정된 유막형성이 製品의 품질에 커다란 영향을 미치며, 또한 모든 마찰기구에서도 유막형성 향제는 윤활특성에 큰 영향을 미친다. 이에 관한 연구로서 CHENG 등은 윤활막의 連續的인 존재를 가정한 解析을 하였고, KIMURA 등은 압연윤활에서의 윤활막의 파단은 강판과 Roller의 heat streak의 원인이 된다고 발표한 바 있으며 국내에서도 Journal Bearing의 혼합윤활특성에 대하여 보고된 바 있다. 따라서 본 연구에서는 압연윤활을 Model 화한 Roller Disk형 시험기를 제작하여 가중과 r.p.m 변화에 따른 마찰력과 온도변화와 그에 따른 유막의 상태에 의한 윤활특성을 연구하고자 한다.

  • PDF

Detection of Main Spindle Bearing Conditions in Machine Tool via Neural Network Methodolog (신경회로망을 이용한 공작기계 주축용 베어링의 고장검지)

  • Oh, S.Y.;Chung, E.S.;Lim, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.33-39
    • /
    • 1995
  • This paper presents a method of detecting localized defects on tapered roller bearing in main spindle of machine tool system. The statistical parameters in time-domain processing technique have been calculated to extract useful features from bearing vibration signals. These features are used by the input feature of an artificial neural network to detect and diagnose bearing defects. As a results, the detection of bearing defect conditions could be successfully performed by using an artificial neural network with statistical parameters of acceleration signals.

  • PDF

Numerical Analysis of Misaligned Finite Line Contacts EHL Problem (Misalignment가 있는 유한한 선접촉 EHL 문제의 수치해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.263-271
    • /
    • 2010
  • The rollers of cylindrical roller bearing are axially profiled to relieve high edge stress concentration caused by mainly their finite length and by misalignment. In this paper, a numerical analysis is carried to study the EHL of misaligned (tilted) rollers with axially profiled ends. Using a finite difference method with non-uniform grids and the Newton-Raphson method, the highly nonlinear EHL problems are systematically solved. Physically consistent solutions are obtained for moderate load, material parameters and very small misalignment. For different misalignment angles, contours and sectional plots of pressure and film shape near both edge regions are compared. The asymmetric pressure distributions and film shapes show that the EHL results of finite line contacts are highly dependent upon very small amounts of roller misalignment. Especially, the effect of misalignment on the EHL pressure distribution is much higher than the film shapes.

Remanufacturing Process and Improvement in Fatigue Life of Spherical Roller Bearings (자동조심 롤러 베어링의 재제조 공정 및 피로수명 향상)

  • Darisuren, Shirmendagva;Amanov, Auezhan;Kim, Jun-Hyong;Lee, Seung-Chul;Choi, Gab-Su;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.350-355
    • /
    • 2014
  • This study proposes a sustainable bearing remanufacturing process using the ultrasonic nanocrystal surface modification (UNSM) technique. The UNSM technique is a newly developed and sophisticated surface modification technique that can increase the mechanical properties and improve the friction and wear performance of materials. Taking advantage of the bearing manufacturing process is the most significant way of optimizing the life of a bearing. The proper maintenance and usage of repaired bearings can increase their life to be equal to or greater than that of new bearings. This paper discusses the restoration of certain mechanical properties of worn, damaged, and discarded bearings, and suggests a remanufacturing process for used bearings, which can impart them with a lifespan equivalent to that of new bearings. The most damaged part of the discarded bearings is the raceway, which is the site of accumulated fatigue. The existing polishing or barrel finishing processes can recover the accumulated fatigue only partially. Rolling contact fatigue tests performed on UNSM-treated new and used specimens polished after $4{\times}10^6$ cycles reveal that UNSM-treated new specimens exhibit the longest fatigue life compared to other specimens. This study verifies the proposed complete fatigue recovery process, which can increase the fatigue life of used bearings to a level greater than that of new bearings.

A Study on the Thermal Behavior of Bearing Surroundings using State-Space in Machine Tool Spindle System (공작기계 스핀들시스템에서 상태공간을 이용한 베어링 주변의 열거동에 대한 연구)

  • 신동수;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1045-1049
    • /
    • 1995
  • This paper proposes the state-space model of the thermal behavior of the spindle system to establish dynamic mathematical model of thermal characteristics in machine tool spindle system. the model is derived form physical law of heat transfer and thermoelasticity and represents the thermal behavior induced by uneven thermal expansions whitin a bearing. The model, which is sucessfully validated for two typical configurations of high speed spindle assembles, provides a tool for understanding the basis mechanics of induced thermal expansion as a function of initial preload, spindle speed and housing cooling conditions.

  • PDF

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.