• Title/Summary/Keyword: roll force

Search Result 300, Processing Time 0.025 seconds

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

Controlled Flight of Tailless Insect-Like Flapping-Wing Flying-Robot (꼬리날개 없는 곤충모방 날갯짓 비행로봇의 제어비행)

  • Phan, Hoang Vu;Kang, Taesam;Park, HoonCheol
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.256-261
    • /
    • 2016
  • An insect-like flapping-wing flying-robot should be able to produce flight forces and control moments at the same time only by flapping wings, because there is no control surface at tail just like an insect. In this paper, design principles for the flapping mechanism and control moment generator are briefly explained, characteristics measured force and moment generations of the robot are presented, and finally controlled flight of the flying robot is demonstrated. The present insect-like robot comprises a lightweight flapping mechanism that can produce a flapping angle larger than $180^{\circ}$ and a control moment generator that produces pitch, roll, and yaw moments by adjusting location of the trailing edges at the wing roots. The measured force and moment data show that the control input angles less than $9^{\circ}$ would not significantly reduce the vertical force generation. It is also observed that the pitch, roll, and yaw control moments are produced only by the corresponding control input. The simple PID control theory is used for the controlled flight of the flying robot, controlling pitch, roll, and yaw motions. The flying robot successfully demonstrated controlled flight for about 40 seconds.

Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling (고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측)

  • Song, Gil Ho;Jung, Jae Chook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high-strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high-strength steel below TS 980 MPa in skin pass rolling.

Multivariable Control of Cold-Rolling Mills with Roll Eccentricity (롤편심을 포함한 냉간압연 시스템의 다변수 제어)

  • Kim, Jong-Sik;Kim, Seung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.502-510
    • /
    • 1997
  • A disturbance rejection controller using eccentricity filtering and LQ control techniques is proposed to alleviate the effecto of major roll eccentricity in multivariable cold-rolling processes. Fundamental problems in multivariable cold-rolling processes such as process time delay inherent in exit thickness measurement and non-stationary characteristics of roll eccentricity signals can be overcome by the proposed control method. The filtered instantaneous estimate of roll eccentricity may be exploited to improve instantaneous estimate of the exit thickness variation based on roll force and roll gap measurements, and a feedforward compensator is augmented as a reference for a gaugemeter thickness estimator. LQ feedback controller is combined with eccentricity filter for the attenuation of the exit thickness variation due to the entry thickness variation. The simulation results show that the roll eccentricity disturbance is significantly eliminated and other disturbances also are attenuated.

Design of An Adaptive Force Control System for the Strip Caster (박판주조의 적응제어 시스템 설계)

  • 윤두형;허건수;변철울
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.766-771
    • /
    • 1997
  • In this strip casting,size of the roll separating force is a index representing the solidifying status of the melt. Rolling forces at the start of the casting process can change abruptly due to the overcooling of the leader strip. This inconsistensy leads to machine damage or deficient solidification which results in the failure of the casting. In this study, a mathematical model is derived for the hydraulic servo pressure control system for the twin roll strip caster and its parameters are estimated by the RLS algorithm. Based on the identified model, an one-step ahead predictive control method is applied in order to minimize the transient fluctuation of the rolling force. Its simulation results are compared with those of the conventional PI controllers.

  • PDF

Low Frequency Roll Motion of a Semi-Submersible Moored in Irregular Waves

  • Hong, Yong-Pyo;Choi, Yong-Ho;Lee, Dong-Yeon;Lee, Wang-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.1-13
    • /
    • 2007
  • A semi-submersible drilling rig is regarded as one of the typical offshore structures operated in the field with moderate environments such as the Gulf of Mexico, Brazil, and West Africa. Its typical roll and pitch natural periods are around 30 seconds, which avoids prevailing regions of the wave energy spectrum, and their responses in waves are quite acceptable for common operation conditions. But large roll and pitch motions can be induced by wave difference frequency energy spectrum if the metacentric heights of a semi-submersible decrease to small values in some loading conditions, and it is because the roll and pitch natural periods increase and approach to the region where the spectral density of the low frequency wave drift moment has significant value. This paper describes the low frequency roll motion of a semi-submersible that are excited by the wave 2nd order difference frequency energy by a series of model experiments. From the model tests with several different initial metacentric heights (GM), it was observed that a semi-submersible can experience large roll motion due to the wave group spectrum.

Design of Roll Forming Machine for Fail Safe Chord Forming Process (페일 세이프 코드의 성형가공 롤 포밍 머신의 설계)

  • Jung, Won-Jae;Park, Min-Hyeok;Choi, Jin-Kyu;Nam, Kwang-Sik;Shang, Zhao;Lee, Jae-Hyung;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.44-49
    • /
    • 2014
  • Roll forming technology has a problem in that it depends only on experience without accurate data in the actual field. To solve this problem, it is necessary to procure accurate data during the roll forming process. To this end, we determined the operating force and the material thickness by implementing several changes to those variables during an experiment. This study compares the FEA results and experimental results. Experimental results were used for the basic data of the design. The FEA results show that the roll forming machine is operating accurately and safely. And, a comparison of the results shows that the design of the automatic roll forming machine is operating in the right way. This design of an automatic roll forming machine will be helpful for many areas of the industry.

A Dynamic Set-up Technique for High Accuracy set-up of Continuous Hot Strip Finishing Mill (열간 마무리압연 설정의 정도향상을 위한 동적 설정법)

  • 문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.232-238
    • /
    • 1996
  • A dynamic mill set-up technique was developed to achieva a more precise roll gap set-up of the finishing mill stands for steel strip rolling. In the conventional mill set-up model the set-up values such as roll gap and roll speed are determined before the sheet bar reached the entry side of the finishing mill train and maintained constant until the strip top end passes through the last stand. In the way however a dynamic set-up logic that gives a way to adjust the roll gap value of the final mill stand for the strip ingoing from the ahead of the front stand was developed and attached to the existing set-up model. The roll gap modification is based on the analysis of the observation in the third stand of the finishing mill train. The dynamic set-up model was proved very effective for the more precise mill set-up and for operational stability in the hot strip finishing mill train.

  • PDF

Study on Failure in Outer Ring of Work Roll Bearing in Hot Rod Rolling Mill (열간 선재 압연기에서 작업롤 베어링의 외측링 파손에 관한 연구)

  • Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2017
  • A finite element analysis-based approach which investigates the causes of the breakdown in the outer ring of the choke at hot rod rolling mill is presented. Two-dimensional drawings of the whole vertical-type mill stand are transformed into three-dimensional CAD models. Non-linear elasto-plastic deformation analysis of material at the roll gap is performed for computing roll force and torque of the work roll. Then, the reaction forces of the bearing rings together with a set of roller bearings that support the work roll are obtained by means of rigid body motion analysis. Finally, stress behaviors in the bearing rings together with a set of roller bearings that support the work roll are investigated by linear elastic analysis. Results reveal that stress at the contact area between the outer ring and roller bearing is extraordinary high when an internal gap between an external surface of the outer ring and the internal surface of the chock due to wear of the inside of the chock occurs.