• Title/Summary/Keyword: rock-soil

Search Result 1,074, Processing Time 0.029 seconds

Introduction to the Strategic Sampling Approaches to Construct Optimal Conceptual Model of a Contaminated Site (오염부지 최적 개념모델 수립을 위한 전략적 샘플링 기법 소개)

  • Park, Hyun Ji;Kim, Han-Suk;Yun, Seong-Taek;Jo, Ho Young;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.28-54
    • /
    • 2020
  • Even though a systematic sampling approach is very crucial in both the general and detailed investigation phases to produce the best conceptual site model for contaminated sites, the concept is not yet established in South Korea. The U.S. Environmental Protection Agency (EPA) issued the 'Strategic Sampling Approaches Technical guide' in 2018 to help environmental professionals choose which sampling approaches may be needed and most effective for given site conditions. The EPA guide broadly defines strategic sampling as the application of focused data collection across targeted areas of the conceptual site model (CSM) to provide the appropriate amount and type of information needed for decision-making. These strategic sampling approaches can prevent the essential data from missing, minimize the uncertainty of projects and secure the data which are necessary for the important site-decisions. Furthermore, these provide collaborative data sets through the life cycle phases of projects, which can generate more positive proofs on the site-decisions. The strategic sampling approaches can be divided by site conditions. This technical guide categorized it into eight conditions; High-resolution site characterization in unconsolidated environments, High-resolution site characterization in fractured sedimentary rock environments, Incremental sampling, Contaminant source definition, Passive groundwater sampling, Passive sampling for surface water and sediment, Groundwater to surface water interaction, and Vapor intrusion. This commentary paper introduces specific sampling methods based on site conditions when the strategic sampling approaches are applied.

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant (후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가)

  • Ha, Jeong-Gon;Kim, Mi Rae;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

Reliability Assessment of Ambient Noise HVSR per Observation Condition (관측 환경에 따른 상시미동의 HVSR 결과 신뢰도 평가)

  • Yoo, Byeongho;Choi, Woojeong;Choi, Inhyeok;Kwak, Dongyoup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.23-33
    • /
    • 2022
  • The horizontal-to-vertical spectral ratio (HVSR) of ambient noise is widely used to identify the resonant frequency of a site. The frequency at the largest HVSR is regarded as the resonant frequency. The source of ambient noise is impossible to identify and control. Therefore, obtaining reliable HVSR of ambient noise requires sufficient measurement time and absence of near-field vibration. In this study, we investigated the minimum stabilization time required for a portable seismometer and the effect of the distance between the seismometer and artificial vibration on HVSR estimation. In the case of a soil site, the HVSR was stabilized after 5 minutes after sensor installation. In the case of a rock site, stabilization required more than an hour. Human-footsteps within 10 m of the seismometer strongly influenced the HVSR for the soil site. These results provide a field guideline when measuring ambient noise for HVSR.

Aseismic analysis for large underground structure (대형 지하구조물의 내진해석)

  • Choi, Seung-Ho;Pam, Inn-Joon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2009
  • The large underground structure under earthquake is affected more by soil dynamic characteristic and volume of structure than by structural dynamic characteristic itself. Therefore, it is the purpose of research that the aseismic analysis for caverns including various aseismic analysis factors (rock quality-Q value, soil dynamic characteristic, shape ratio $&$ volume, underground structural dynamic characteristic, and aseismic level) are applied by using the numerical analysis program (SAUS; seismic analysis of underground structures). The result of research is stated that maximum strain, maximum moment, and maximum shear are not sensitive with respect to shape ratio. However those values are sensitive with respect to Q value, volume of underground structure and aseismic level. Based on the results of this research, the assessment for the influence factors of aseismic analysis for large underground structure could be possible.

Case Study of Friction Piles Driven into Clayey Soils on the Central Coast of Vietnam (베트남 중부 연안의 대심도 점토지반에 시공된 강관 마찰 말뚝의 항타시공관리)

  • Seol, Hoon-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.19-31
    • /
    • 2024
  • In Korea, driven piles are generally penetrated up to weathered rock or harder strata. Friction piles have been used to some extent in the southwest coastal area with deep soils; however, friction piles are not extensively due to uncertainties about construction quality. The embedded pile construction method is primarily used due to noise and vibration complaints. However, in Southeast Asian countries (e.g., Cambodia, Myanmar, and Vietnam), where soft sediments are deep, the driven pile method is commonly used due to its economic advantages. Construction companies are increasingly entering overseas construction markets, e.g., Southeast Asia; thus, it is necessary to understand the behavior of driven friction piles in the soil and improve on-site engineering management to gain market competitiveness in these countries. In this study, the bearing capacity of friction piles driven into clayey coastal soils in Vietnam with time-dependent characteristics was evaluated based on the dynamic and static pile load tests. Based on the results, a modified Danish formula is proposed for on-site quality management.

Method for Measuring pH and Alkalinity of High-Pressure Fluid Samples : Evaluation through Artificial Samples (고압 유체 시료의 pH 및 알칼리도 측정 방법 : 가상 시료를 활용한 실용성 평가)

  • Minseok Song;Soohyeon, Moon;Gitak Chae;Jun-Hwan Bang
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • As part of monitoring technology aimed at verifying the stability of CO2 geologic storage and mitigating concerns about leakage, a method for measuring the pH and alkalinity of high-pressure fluid samples was established to obtain practical technology. pH measurement for high-pressure samples utilized a high-pressure pH electrode, and alkalinity was measured using the Gran titration method for samples collected with a piston cylinder sampler (PCS). Experimental samples, referencing CO2-rich water and CO2 geologic storage studies, were prepared in the laboratory. The PCS controls the piston, preventing CO2 degassing and maintaining fluid pressure, allowing mixing with KOH to fix dissolved CO2. Results showed a 6.1% average error in high-pressure pH measurement. PCS use for sample collection maintained pressure, preventing CO2 degassing. However, PCS-collected sample alkalinity measurements had larger errors than non-PCS measurements, limiting PCS practicality in monitoring field settings. Nevertheless, PCS could find utility in preprocessing for carbon isotope analysis and other applications. This research not only contributes to the field of CCS monitoring but also suggests potential applications in studies related to natural analogs of CCS, CO2-rock interaction experiments, core flooding experiments, and beyond.

Measurement of the radon and thoron exhalation rates from the water surface of Yixin lake

  • Jiulin Wu;Shuaibin Liu;Tao Hu;Fen Lin;Ruomei Xie;Shuai Yuan;Haibo Yi;Yixiang Mo;Jiale Sun;Linquan Cheng;Huiying Li;Zhipeng Liu;Zhongkai Fan;Yanliang Tan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1538-1543
    • /
    • 2024
  • The importance of determining the radon exhalation rate from water surface is emphasized by the increased use of radon and its daughter products as tracers in large-scale circulation studies of the atmosphere. There were many methods to measure radon exhalation from water surface. With the development of radon exhalation rate measurement methods and instruments on the surface of the soil, the rock and building materials, so the radon exhalation rate from water surface can be more accurately measured by applying these improved methods and instruments. In this paper, a cuboid accumulation chamber surrounded by foam boards and a RAD7 were used to measure the radon exhalation rate on the water surface at three different positions by Yixin lake. Each measurement was performed 2 h. The radon exhalation rate from the water surface was about 6 × 10-3 Bq m-2s-1. The thoron exhalation rate from the water surface also can be estimated, it is about 0.16 Bq m-2s-1. These results hint that the radon transmission from the lake bottom soil to water and then into the atmosphere.

Evaluation of the Importance of Variables When Using a Random Forest Technique to Assess Landslide Damage: Focusing on Chungju Landslides (Random Forest를 활용한 산사태 피해 영향인자 평가: 충주시 산사태를 중심으로)

  • Jaeho Lee;Youjin Jeong;Junghae Choi
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.51-65
    • /
    • 2024
  • Landslides are natural disasters that causes significant property damage worldwide every year. In Korea, damage due to landslides is increasing owing to the effects of climate change, and it is important to identify the factors that increase the prevalence of landslides in order to reduce the damage they cause. Therefore, this study used a random forest model to analyze the importance of 14 factors in influencing landslide damage in a specific area of Chungju, Chungcheongbuk-do province, Korea. The random forest model performed accurately with an AUC of 0.87 and the most-important factors were ranked in the order of aspect, slope, distance to valley, and elevation, suggesting that topographic factors such as aspect and slope more greatly influence landslide damage than geological or soil factors such as rock type and soil thickness. The results of this study are expected to provide a basis for mapping and predicting landslide damage, and for research focused on reducing landslide damage.

Comparison of plant species diversity and its relationship with physical environmental factors in Gotjawal Forest, Jeju Island, Republic of Korea, using the modified Whittaker plot method

  • Ju-Seon Lee;Young-Han You;Ji-Won Park;Yeo-Bin Park;Yoon-Seo Kim;Jung-Min Lee;Hae-In Yu;Bo-Yeon Jeon;Kyeong-Mi Cho;Eui-Joo Kim
    • Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.247-255
    • /
    • 2024
  • Background: To effectively understand and evaluate plant diversity in a specific area and make meaningful comparisons between regions, standardized methods that measure diversity irrespective of survey plot size are crucial. This study proposes a model equation for comparing plant species diversity using the modified Whittaker plots. Plant species diversity was measured in two Gotjawal areas on Jeju Island, where the coexistence of northern and southern limit species significantly impacts diversity. By analyzing the relationship between plant species diversity and environmental factors, the study clarified the characteristics of plant and habitat diversity in the Gotjawal ecosystem. Results: The species richness of vascular plants, herbaceous plants, and woody plants increased with area and was higher in Jeoji Gotjawal than in Seonheul Gotjawal. Similarly, the species turnover rate (slope value) was higher in Jeoji Gotjawal (4.37) than in Seonheul Gotjawal (3.85). This indicates that the species richness in Jeoji Gotjawal increases more with the expansion of the survey area (1-1,000 m2), reflecting a faster species turnover rate. Additionally, in Gotjawal areas, species richness increased with greater leaf litter depth, elevation, slope, and rock ratio. These results indicate that differences in plant species diversity were attributed to soil environmental factors. Conclusions: The plant species diversity of Gotjawal, surveyed using standardized methods, was lower than that of forested areas in the central region of South Korea where the same method was applied. Most previous studies on species diversity likely compared diversity without considering a consistent survey area. Therefore, when comparing plant species diversity domestically and globally, it emphasizes the need for the use of standardized survey methods.