DOI QR코드

DOI QR Code

Case Study of Friction Piles Driven into Clayey Soils on the Central Coast of Vietnam

베트남 중부 연안의 대심도 점토지반에 시공된 강관 마찰 말뚝의 항타시공관리

  • 설훈일 (SK에코플랜트 지반환경기술팀)
  • Received : 2024.04.01
  • Accepted : 2024.05.09
  • Published : 2024.06.30

Abstract

In Korea, driven piles are generally penetrated up to weathered rock or harder strata. Friction piles have been used to some extent in the southwest coastal area with deep soils; however, friction piles are not extensively due to uncertainties about construction quality. The embedded pile construction method is primarily used due to noise and vibration complaints. However, in Southeast Asian countries (e.g., Cambodia, Myanmar, and Vietnam), where soft sediments are deep, the driven pile method is commonly used due to its economic advantages. Construction companies are increasingly entering overseas construction markets, e.g., Southeast Asia; thus, it is necessary to understand the behavior of driven friction piles in the soil and improve on-site engineering management to gain market competitiveness in these countries. In this study, the bearing capacity of friction piles driven into clayey coastal soils in Vietnam with time-dependent characteristics was evaluated based on the dynamic and static pile load tests. Based on the results, a modified Danish formula is proposed for on-site quality management.

국내 항타 말뚝기초의 경우 대부분 풍화암 이상의 단단한 지층에 선단 지지되는 경우가 대부분이며, 서남해 지역의 연약지반이 깊게 발달한 일부에서 마찰 말뚝(friction pile)이 사용되었으나 시공관리의 불확실성으로 제한적으로 적용되고 그 사례가 많지 않다. 또한 시공과 관련하여 국내의 경우 소음 및 진동 등의 민원문제로 매입 시공이 주를 이루고 있으나, 퇴적지반이 깊은 동남아 국가(캄보디아, 미얀마, 베트남 등) 등에서는 경제성 확보를 위해 항타 시공을 통한 말뚝 시공 비율이 높으며, 그에 따른 시공 및 현장관리 경험이 많이 축적되어 있다. 현재 국내 많은 건설 기업들이 동남아 등 해외 시장 진출 사례가 크게 증가함에 따라, 해당국가에서의 경쟁력 확보를 위해서는 항타시공을 이용한 마찰지지 말뚝 시공사례에 따른 문제점들을 파악하고 현장관리 역량을 강화해야 할 필요가 있다. 이에 본 연구에서는 베트남 중부 연안의 대심도 점토지반에 항타 시공된 마찰지지 강관 말뚝의 동적/정적 재하시험 결과의 비교분석과 이를 토대로 수정된 항타공식을 이용한 강관 말뚝의 시공관리 방안을 제안하였다.

Keywords

References

  1. AASHTO (2010), "LRFD Bridge Design Specifications (5th ed.)", American Association of State Highway and Transportation Officials, Washington, D.C.
  2. ASCE (2016), "Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-16)", American Society of Civil Engineers Publications.
  3. ASTM D 1143-81 (2013), "Standard Test Method for Piles under Static Axial Compressive Load", ASTM International, West Conshohocken.
  4. ASTM D 3689-07 (2013), "Standard Test Methods for Deep Foundations under Static Axial Tensile Load", ASTM International, West Conshohocken.
  5. ASTM D 4945-17 (2013), "Standard Test Method for High-Strain Dynamic Testing of Deep Foundations", ASTM International, West Conshohocken.
  6. Beresibo, W. (2021), "Prediction of Bearing Capacity of Driven Piles Based on Dynamic Formulas", Global Scientific Journals, Vol.9, Issue 10, Online: ISSN 2320-9186.
  7. Chung, C.K. and Kim, M.M. (1985), "Evaluation and Adjustment of Dynamic Pile-Driving Formulas", Journal of Civil and Environmental Engineering Research, KSCE, Vol.5, Issue 4, pp.23-30.
  8. DS 415 (1998), "Norm for Fundering, Code of Practice for Foundation Engineering", Dansk Standard (in Danish).
  9. FHWA (2006), "Design and Construction of Driven Pile FoundationsReference Manual", Publication No. FHWA NHI-05-042.
  10. FHWA (2016), "Design and Construction of Driven Pile Foundations", Publication No. FHWA-NHI-16-009.
  11. Hong, H.S., Cho, C.W., Kim, S.H., Eum, J.K., and Lee, M.W. (1997), "A Study on the Reliability of Dynamic Pile Formulae", Proc. of the Korean Geotechnical Society, Seoul, Vol.1997, pp.55-62.
  12. International Code Council, Inc. (2002), "2003 International Building Code", Country Club Hills, IL.
  13. Jensen, J.L., Augustesen, A., and Sorensen, C.S. (2004), "The Influence of Time on the Bearing Capacity of Driven Piles", Published in: NGM 2004 : Proceedings of the 14th Nordic Geotechnical Meeting.
  14. KGS (2018), "Structure Foundation Design Standard", Korean Geotechnical Society, Seoul, Korea.
  15. Kim, J. D., Im, H. S., Park, Y. B., Park, J. B., and Lee, W. J. (2000), "Determination of the Optimized Driving Force and End Time of Driving for Pile Construction", Housing & Urban Research Institute, Daejeon, 237p.
  16. La, S.M., Hong, B.K., and Yoo, H.K. (2011), "Driveability and Bearing Capacity Characteristics Analysis of 590 MPa Grade High Strength Steel Pipe Pile at Songdo Area through Dynamic Load Tests", J. of the Korean Geotechnical Society, Vol.27, No.2, pp.81-90.
  17. Liang, R. and Yang, K. (2013), "Effect of Soil Parameter Uncertainties on Predicted Pile behavior by Dynamic Analysis", Journal of Performance of Constructed Facilities, Vol.28, Issue 6, 04014030.
  18. Lunne, T., Robertson, P. K., and Powell, J. J. M. (1997), "Cone Penetration Testing in Geotechnical Practice", E & FN Spon.
  19. Masouleh, S. F. and Fakharian, K. (2008), "Application of a Continuum Numerical Model for Pile Driving Analysis and Comparison with a Real Case", Computers and Geotechnics, Vol.35, No.3, pp.406-418.
  20. Olson, R. E. and Flaate, K. S. (1967), "Pile-driving Formulas for Friction Piles in Sand", Journal of the Soil Mechanics and Foundations Division, Vol.93, No.6, pp.279-296.
  21. Pestana, Juan M., Hunt, Christopher E., and Bray, Jonathan D. (2002), "Soil Deformation and Excess Pore Pressure Field Around a Closed-Ended Pile", Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.1, ASCE, pp.1-12.
  22. Pile Dynamics Inc. (2015), "Manual for the PDA 8G and PDA-S software", Pile Dynamics Inc., Cleveland.
  23. Ramey, G.E. and Johnson, R. C. (1979), "Relative Accuracy and Modification of Some Dynamic Pile Capacity Prediction Equations", Ground Engineering, pp.47-52.
  24. Randolph, M. F. (2003), "Science and Empiricism in Pile Foundation Design", Geotechnique, Vol.53, No.10, pp.847-875.
  25. Randolph, M.F., Carter, J.P., and Wroth, C.P. (1979), "Driven Piles in Clay - the Effects of Installation and Subsequent Consolidation", Geotechnique, Vol.29, No.4, pp.361-393.
  26. Seo, M.J., Park, J.B., Park, Y.B., and Lee, J.S. (2015), "Dynamic Analyses on Embedded Piles Based on Wave Equation", J. of the Korean Geotechnical Society, Vol.31, No.11, pp.5-13.
  27. Standards Australia (2009), "AS 2159-2009: Piling - Design and installation", Sydney.