• Title/Summary/Keyword: rock-fill dam

Search Result 50, Processing Time 0.034 seconds

Improved Evaluaton for the Seismic Capacity of Rock-Fill Dam (사력댐의 향상된 내진성능 평가방법)

  • Kwon, Hyek-Kee;Jang, Jung-Ryeol;Hur, Choon-Kun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.697-704
    • /
    • 2005
  • The objective of this study is firstly to frame up the seismic safety of rock-fill dams. It is necessary to analyze seismic response and evaluate seismic performance of rock-fill dams during earthquake. In this study, seismic damage and dynamic analysis of rock-fill dams using structural analysis package such as FLAC were performed. According detailed analysis, the vibration through the dam structure seems to be very critical depending on the shape of the dams. For more precise evaluation of seismic fragility of rock-fill dams, further research is still needed.

  • PDF

A Study of CFRD using a Gravel Fill (하상사력재를 이용한 CFRD의 연구)

  • Jeong, Chan-Kyun;Noh, Tae-Gil;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.842-853
    • /
    • 2008
  • In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.

  • PDF

Transient stochastic analysis of nonlinear response of earth and rock-fill dams to spatially varying ground motion

  • Haciefendioglu, Kemal
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • The main purpose of this paper is to investigate the effect of transient stochastic analysis on nonlinear response of earth and rock-fill dams to spatially varying ground motion. The dam models are analyzed by a stochastic finite element method based on the equivalent linear method which considers the nonlinear variation of soil shear moduli and damping ratio as a function of shear strain. The spatial variability of ground motion is taken into account with the incoherence, wave-passage and site response effects. Stationary as well as transient stochastic response analyses are performed for the considered dam types. A time dependent frequency response function is used throughout the study for transient stochastic responses. It is observed that stationarity is a reasonable assumption for earth and rock-fill dams to typical durations of strong shaking.

Safety Evaluation of Rock-Fill Dam by Seismic(MASW) Method (사력댐의 안정성평가를 위한 표면파탐사(MASW)의 활용성)

  • 정해상;오영철;방돈석;안상로
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.359-364
    • /
    • 2003
  • For safety evaluation of a rock-fill dim, it is often necessary to investigate spatial distribution of weak zones such as fracture. Both DC-resistivity survey and seismic(SASW) method are usually used for the purpose. Recently, Multichannel analysis of surface waves(MASW) method which makes up for the weak point of SASW method is developed and the site examination which is simple came to be possible comparatively. In order to obtain 2-D shear-wave velocity(Vs) profile along the dam axis that can be associated with dynamic properties of filled materials, MASW method was adapted. Then, DC-resistivity survey and drilling survey were performed to compare with each results. We confirmed that the MASW method and DC-resistivity survey show complementary result that corresspond with drilling result. Therefore, MASW method is an efficient method for dynamic characterization of dam-filling materials and also the combination of related methods such as DC-resistivity can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Geotechnical treatment for the fault and shattered zones under core foundation of fill dam (단층 및 파쇄대가 분포하는 Fill Dam 기초의 보강대책)

  • 김연중;최명달
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.19-35
    • /
    • 1992
  • aThe elastic properties of the fault zone (width; 3~12m), the shattered zone (width; over 40m) and the fresh rock zone distributed under the core foundation of fill dam in granitic gneiss have widely different range. The deformation moduli of the fresh rock zone, the fault zone and the shattered zone obtained from in situ rock tests - Plate Load Test and Bore Hole Deformation Test - show a range of $42,000~168,000kg/\textrm{cm}^2,{\;}963~2,204kg/\textrm{cm}^2{\;}and{\;}1,238~2,098kg/\textrm{cm}^2$, respectively. The differential settlements hetween the fault zone and the fresh rock zone are expected after the dam construction. Therefore, the displacement of foundation and concrete fill are evaluated using FEADAM 84 program of finite element analysis. The geometric distribution of discontinuifies obtained from the site mapping and drilling is considered in the finite element analysis. The analysis shows that the differential settlements between the fault zone and the fresh rock zone is about 6cm, while that of concrete fill is within 0.5cm.

  • PDF

Aanalysis of Geophysical exploration tendency of C.F.R.D (표면차수벽 석괴댐의 물리탐사 경향 분석)

  • Kim, Jae-Hong;Shin, Dong-Hoon;Im, En-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.871-876
    • /
    • 2010
  • When surface Concrete Face Rock fill Dam constructs than existent center core type rock fill dam, it is much prevalent form in domestic these day by quality control of that is profitable and weather condition etc. of coreZone. C.F.R.D is less research about seismic survey(Refractional Seismic Prospectin, Resistivity Prospecting) of levee body than fill dam. Thus as C.F.R.D seismic survey is less, safety of that consist is short most development flue is high reason. That is not checking target of minuteness safety diagnosis and so on by short operation period. Wish to analyze inquiry incidental and difference with center core type dam and acquire C.F.R.D preservation administration upper necessary inquiry condition forward hereafter.

  • PDF

Evaluation of the applicability of the surface wave method to rock fill dams (사력댐에서의 표면파 기법 적용성 평가 연구)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Bang, Eun-Seok;Kim, Sung-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In current design practice, the shear wave velocity (Vs) of the core and rock-fill zone of a dam, one of the characteristics essential for seismic response design, is seldom determined by field tests. This is because the borehole seismic method is often restricted in application, due to stabilisation activities and concern for the security of the dam structure, and surface wave methods are limited by unfavourable in-situ site conditions. Consequently, seismic response design for a dam may be performed using Vs values that are assumed, or empirically determined. To estimate Vs for the core and rock-fill zone, and to find a reliable method for measuring Vs, seismic surface wave methods have been applied on the crest and sloping surface of the existing 'M' dam. Numerical analysis was also performed to verify the applicability of the surface wave method to a rock-fill dam. Through this numerical analysis and comparison with other test results, the applicability of the surface wave method to rock-fill dams was verified.

Estimation of Dynamic Material Properties for Fill Dam : I. In-situ Shearwave Velocity Profiles (필댐 제체 재료의 동적 물성치 평가 : I. 현장 전단파 속도 주상도)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Kwon, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.69-85
    • /
    • 2009
  • It is very important to measure reliable dynamic properties of each zone in dam for seismic design. However, the Vs values of core and rock-fill zone are seldom determined by field test. Consequently, seismic design in dam is performed using Vs values assumed or empirically determined. So, it is required that reliable Vs has to be evaluated by in-situ test. In this study, surface wave method, which is nondestructive, was applied to dam to evaluate Vs profiles of core and rock-fill zone in dam. In 6 dams, using SASW and HWAW methods, Vs profiles were evaluated reliably. D/B of Vs profiles of each zone with depth and relationship between confining pressure and Vs profiles of rock-fill zone were constructed including existing results of other dams. The evaluated D/B and proposed relationship were compared with the frequently used empirical method by Sawada and Takahashi.

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF

A Study on particle crushing of rock-fill material (록필댐 축조재료의 입자파쇄에 대한 연구)

  • Im, Eun-Sang;Snin, Dong-Hoon;Kim, Jea-Hong;Kim, Kwang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1025-1028
    • /
    • 2009
  • Earth and rock fill dam is our typical dam because of their inherent flexibility and adaptability to various fundation conditions. In order to secure structural safety, rockfill materials are used angular particles obtained by blasting parent rock or rounded particles collected from river beds. Concrete-faces rockfill dams(CFRD) and Concrete-faces gravelfill dams(CFGD) have become popular in the last 20 years as s result of their good performance and low cost compared with the rockfill dam. These Dams are also constructed by the materials. A key factor in the design of the dams is the deformations induced during construction and upon reservoir filling. These can be predicted using the stress-strain and strength properties can be adequately define. However the stress-strain properties of rockfill are difficult to determine because the properties are affected by such factors as particle grading, size and shape of particles, stress conditions, and particle crushing. In our study, testing of the behavior of the rockfill materials are essential prerequisites to the realistic analysis and design of the CFGD. This paper deals with laboratory testing of particle crushing among the study.

  • PDF