• Title/Summary/Keyword: rock mechanical aspects

Search Result 11, Processing Time 0.022 seconds

Rock Mechanical Aspects in Site Characterization for HLW Geological Disposal: Current Status and Case Studies (고준위방사성폐기물 심층처분 부지조사를 위한 암반공학적 요소: 국내외 현황 및 사례 조사)

  • Choi, Seungbeom;Kihm, You Hong;Kim, Eungyeong;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.136-148
    • /
    • 2020
  • Nuclear power plants have been operated in Korea since 1978, thus the high-level radioactive waste (HLW) produced from the plants has been accumulated accordingly. Hence, it is urgent to secure a final repository for HLW disposal, however, siting process should be preceded, which usually takes long time, as it requires broad and precise investigation. The investigation is generally carried out in stages, which consists of multidisciplinary approaches. In this study, the case studies mainly pertaining to rock mechanics were conducted. Rock mechanical aspects required in each stage and their applications were investigated and corresponding R&D researches were presented as well. At the same time, current research status in Korea was presented, followed by a brief future research plan with regard to the site investigation. The future research aims to produce fundamental information for siting process, and the compiled cases in this study will be utilized as references in the research.

Numerical study on the estimation of the temperature profile and thermo-mechanical behaviour in rock around the Taejon LNG Pilot Cavern

  • Lee Dae-Hyuck;Kim Ho-Yeong;Gatelier Nicolas;Amantini Eric
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.233-237
    • /
    • 2003
  • For Taejon LNG Pilot Cavern being constructed to verify the technical aspects for storing LNG in lined rock cavern, various numerical studies were carried out to estimate the temperature profile and to understand thermo-mechanical behaviour in the rock around the cavern. With the help of Claesson's analytical solution and numerical models, the extent of zero degree isotherm and possible boil-off rate of gas to be stored were estimated. Even though the tensile stress by cooling down is very large compared to the tensile strength of the rock, it has been shown that possible rock yielding might bring about the dramatic reduction of the stress.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Mechanical Properties of Rocks in Dokdo (독도 암석의 역학적 특성에 관한 연구)

  • Park, Chan;Jung, Yong-Bok;Song, Won-Kyong;SunWoo, Choon;Kim, Bok-Chul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • Dokdo is a volcano edifice originating from an oceanic island that was formed around 3 million to 2.2 million years ago, and it consists of Dongdo(eastern island) and Seodo(western island). Even though Dokdo is a small volcanic island, Dokdo has infinite potential value and significant economic, social, scientific, and technical aspects due to its resources, ecological and territorial value. In addition, it is of national interest with regards to the dispute with Japan over the dominium of Dokdo. A need to evaluate the ground stability of Dokdo, especially in Dongdo, has been seriously raised recently due to the various cracks caused by the progressive weathering and corrosion. This study dealt with the geology and geological layers of Dokdo and identified the status of ground cracks as the previous research to evaluate the ground stability of zones of concern in Dongdo. Also, this study analyzed the relationships between physical and mechanical properties with rock types. The results showed that the values of rock properties in Dokdo are lower contrary to the general rocks in Korea, and tuff was especially affected by the weathering and corrosion.

The Case Study of Rock Treatment Method for the Fractured Rock Foundation of Underground Roadway Structure (기반암의 파쇄대 특성을 고려한 지하차도 기초 보강사례)

  • Yoon, Ji-Nam;Yang, Sung-Don;Lee, Geun-Ha;Park, Sa-Won;Jung, Hun-Chul
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.125-133
    • /
    • 2008
  • The rock treatment methods for improving bearing capacity and reducing settlement of the underground roadway structure foundation on fractured rock was studied in this paper. Also, effective reinforcement scheme was evaluated by numerical analysis for the application to the practical construction. Various in-situ and laboratory tests were executed systematically at Yeongi-goon, Ohoongchungnam-do, Korea, for the purpose of defining the physical and mechanical properties of rock. Consequently the effective treatment methods insuring the bearing capacity of fractured rock were proposed. In addition, the adequate reinforcing depth of the comparatives measure, such as double rod, triple rod injection methods and micropile, were investigated from the case study. Finally, the most effective construction scheme with the consideration of safety and economical aspects were proposed by using numerical analysis(Plaxis ver. 8.2).

A Study on the Supporting Effect of a Spiral Bolt as a Support System (Spiral bolt의 지보효과에 관한 연구)

  • Cho, Young-Dong;Kang, Choo-Won;Kim, Jae-Woong
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.332-343
    • /
    • 2010
  • This study aims to evaluate the supporting effect of a spiral bolt that is superior to a rock bolt in terms of constructability, stability, environmental and economic aspects as a support system. This study thus analyzed the mechanical properties of a rock bolt which is widely used as a support and a spiral bolt. In addition, laboratory pull-out tests were conducted for the evaluation of properties of the supports such as displacement, pull-out load, confining pressure etc. Moreover, the differences between a rock bolt and a spiral bolt were drawn by comparing the two results of laboratory pull-out tests and in-situ pull-out tests. Then, the differences of the supporting effect of the two supports were analysed by comparing the results of the two pull-out tests with a numerical analysis using FLAC3D.

Support Characteristics of Rock Bolt and Spiral Bolt (록 볼트 및 스파이럴 볼트의 지보특성)

  • Cho, Young-Dong;Song, Myung-Kyu;Lee, Chung-Shin;Kang, Choo-Won;Ko, Jin-Seok;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • This study is to evaluate an effect of supports with respect to these supports after comparing the characteristic of support between rock bolt of a widely used type and spiral bolt of a new type. For these purposes, we performed pull-out test in laboratory about rock and spiral bolts in the case of cement-mortar grout curing periods, 7 and 28 days, then calculated pull-out load, displacement, external pressure, inner pressure and shear stress using data obtained from the results of pull-out test, respectively. In relation between pull-out load and displacement, displacement of spiral bolt is larger than one of rock bolt. It is considered that mechanical property of rock bolt is due to larger than one of spiral bolt. In addition, displacement of supports shows nearly same or decreasing with curing periods. We found that because adhesive force between supports and cement-mortar grout is increasing with compressive strength of grout according to curing periods. The inner pressure of spiral bolt is represented larger than one of rock bolt at a step of same pull-out load. It is suggested that spiral bolt is more stable than rock bolt, maintaining stability of ground or rock mass, when supports are installed in a ground or rock mass under the same condition. Putting together with above results, we can consider that spiral bolt as a new support on an aspect of pull-out load and inner pressure is larger than rock bolt in a ground or rock mass under the same condition. Moreover, spiral bolt is more effective support than rock bolt, considering an economical and constructive aspects of supports, as well as ground or rock stability before or after installing supports.

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

Effects of cementless fixation of implant prosthesis: A finite element study

  • Lee, Hyeonjong;Park, Soyeon;Kwon, Kung-Rock;Noh, Gunwoo
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.341-349
    • /
    • 2019
  • PURPOSE. A novel retentive type of implant prosthesis that does not require the use of cement or screw holes has been introduced; however, there are few reports examining the biomechanical aspects of this novel implant. This study aimed to evaluate the biomechanical features of cementless fixation (CLF) implant prostheses. MATERIALS AND METHODS. The test groups of three variations of CLF implant prostheses and a control group of conventional cement-retained (CR) prosthesis were designed three-dimensionally for finite element analysis. The test groups were divided according to the abutment shape and the relining strategy on the inner surface of the implant crown as follows; resin-air hole-full (RAF), resin-air hole (RA), and resin-no air hole (RNA). The von Mises stress and principal stress were used to evaluate the stress values and distributions of the implant components. Contact open values were calculated to analyze the gap formation of the contact surfaces at the abutment-resin and abutment-implant interfaces. The micro-strain values were evaluated for the surrounding bone. RESULTS. Values reflecting the maximum stress on the abutment were as follows (in MPa): RAF, 25.6; RA, 23.4; RNA, 20.0; and CR, 15.8. The value of gap formation was measured from 0.88 to 1.19 ㎛ at the abutment-resin interface and 24.4 to 24.7 ㎛ at the abutment-implant interface. The strain distribution was similar in all cases. CONCLUSION. CLF had no disadvantages in terms of the biomechanical features compared with conventional CR implant prosthesis and could be successfully applied for implant prosthesis.