• Title/Summary/Keyword: rock mass boundary

Search Result 58, Processing Time 0.021 seconds

New guideline for geomechanical design/construction of conventional NATM tunnels (NATM 터널 설계/시공을 위한 새로운 가이드라인 고찰)

  • Kim, Chang-Yong;Hong, Sung-Wan;Kim, Kwang-Yeom;Baek, Seung-Han;Bae, Gyu-Jin;Schubert, Wulf
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.73-88
    • /
    • 2005
  • Three approaches presently used for the design of underground structures in rock mass are quantitative rock mass classification system, classification systems based on the behavior of the rock mass during excavation and general qualitative procedures for the design process. In this study their characteristics and shortcomings are discussed, and Austrian guideline for tunnel design/construction, that was proposed to solve the problems with these methods, are introduced and compared. For technically sound and economic tunnel construction, a flexible design and construction procedure is needed to cope with uncertain ground and boundary condition, and also actual ground condition should be predicted through feedback of geotechnical information obtained during construction.

  • PDF

A Study on the Distinct Element Modelling of Jointed Rock Masses Considering Geometrical and Mechanical Properties of Joints (절리의 기하학적 특성과 역학적 특성을 고려한 절리암반의 개별요소모델링에 관한 연구)

  • Jang, Seok-Bu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.35-81
    • /
    • 1998
  • Distinct Element Method(DEM) has a great advantage to model the discontinuous behaviour of jointed rock masses such as rotation, sliding, and separation of rock blocks. Geometrical data of joints by a field monitoring is not enough to model the jointed rock mass though the results of DE analysis for the jointed rock mass is most sensitive to the distributional properties of joints. Also, it is important to use a properly joint law in evaluating the stability of a jointed rock mass because the joint is considered as the contact between blocks in DEM. In this study, a stochastic modelling technique is developed and the dilatant rock joint is numerically modelled in order to consider th geometrical and mechanical properties of joints in DE analysis. The stochastic modelling technique provides a assemblage of rock blocks by reproducing the joint distribution from insufficient joint data. Numerical Modelling of joint dilatancy in a edge-edge contact of DEM enable to consider not only mechanical properties but also various boundary conditions of joint. Preprocess Procedure for a stochastic DE model is composed of a statistical process of raw data of joints, a joint generation, and a block boundary generation. This stochastic DE model is used to analyze the effect of deviations of geometrical joint parameters on .the behaviour of jointed rock masses. This modelling method may be one tool for the consistency of DE analysis because it keeps the objectivity of the numerical model. In the joint constitutive law with a dilatancy, the normal and shear behaviour of a joint are fully coupled due to dilatation. It is easy to quantify the input Parameters used in the joint law from laboratory tests. The boundary effect on the behaviour of a joint is verified from shear tests under CNL and CNS using the numerical model of a single joint. The numerical model developed is applied to jointed rock masses to evaluate the effect of joint dilation on tunnel stability.

  • PDF

A Study on the Flow Characteristics of Groundwater and Grout in Jointed Rock (절리암반내 지하수 및 주입재의 유동특성에 관한 연구)

  • 문현구;송명규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.229-240
    • /
    • 1999
  • The groundwater flow and grout flow in individual rock joint and jointed rock mass are studied using various methods of analysis such as (i) the finite difference method, (ii) channel network analysis and (iii) joint network analysis. The flow behaviour is investigated in two distinguishable scales of observation: one for a rough joint of a laboratory scale having variable aperture, and the other for field- scale rock masses having three sets of intermittent joints. In the former case, the aperture-dependent channel flow is identified for both water and grout flows. The comparison of the flow rate in a rough joint is made between the finite difference analysis and existing analytical solution. In the latter case, the effects of increasing number of joints on the groundwater inflow into a circular opening of various diameters are analyzed using both the joint network method and Goodman's analytic solution. Comparisons are made between the two methods. The boundary effects in the joint network method are discussed. The inhomogeneity of joint network and its impacts on the groundwater inflow are also discussed.

  • PDF

Structural design method of the steel brush type loading platen adopted in multi-axial compression experiments (다축압축 실험에 적용되는 철제 빗살구조 재하판의 구조 설계 기법)

  • SaGong, Myung;Lee, Jun-S.;Kim, Sung-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2007
  • Multi-axial compression tests have been frequently conducted to evaluate the in situ properties of rock masses and the mechanical behaviors of rock strata through the model tests. Without the proper boundary condition for the model tests, the mechanical behavior of rock mass would deviate, as can be expected, from the in situ conditions. The boundary condition will affect the internal stress distribution of the specimens and cause some distortion on the measurement. In this study, a design process regarding the steel brush, which has been employed for multi-axial compression test to reduce the frictional restraint along the specimen/loading platen interface, is introduced. The individual brushes are regarded as a simple column and beam to calculate the cross-sectional size and length of the brushes in consideration of the buckling capacity and the allowable deflection.

  • PDF

A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion

  • Ranjbarnia, Masoud;Rahimpour, Nima;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this study, a new analytical-numerical procedure is developed to give the stresses and strains around a circular tunnel in rock masses exhibiting different stress-strain behavior. The calculation starts from the tunnel wall and continues toward the unknown elastic-plastic boundary by a finite difference method in the annular discretized plastic zone. From the known stresses in the tunnel boundary, the strains are calculated using the elastic-plastic stiffness matrix in which three dimensional Hoek-Brown failure criterion (Jiang and Zhao 2015) and Mohr-Coulomb potential function with proper dilation angle (i.e., non-associated flow rule) are employed in terms of stress invariants. The illustrative examples give ground response curve and show correctness of the proposed approach. Finally, from the results of a great number of analyses, a simple relationship is presented to find out the closure of circular tunnel in terms of rock mass strength and tunnel depth. It can be valuable for the preliminary decision of tunnel support and for prediction of tunnel problems.

Permanent Sprayed Concrete Tunnel Linings Waterproofed with Bonded Membranes. A Review of the Current State-of-the-art for Hard Rock Conditions

  • Holter, K.G.
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.103-116
    • /
    • 2019
  • Permanent sprayed concrete tunnel linings waterproofed with bonded membranes have been used at a number of important traffic projects over the last decade. Research has been carried out in several teams in order to increase the understanding of the function, properties and behavior of such linings under different loading and boundary conditions. The basic layout of this lining gives fundamental different system properties compared to the traditional lining systems. The main differences pertain to the groundwater exposure and the resulting hydraulic loading, the response of the concrete and membrane materials to this loading, as well as the geomechanically induced loading of the lining structure. The current understanding of the function and properties of such lining structures is presented in the paper based on review of recent research carried out in Norway, as well as field observations and monitoring carried over a several years. The influence of the water exposure on the final condition of the concrete and membrane materials has proven to be of vital importance for proper material testing and acceptance, assessments of the mechanical contribution of the bonded membrane, as well as assessments of the longterm durability of such linings. Obtaining realistic material parameters for the concrete and membrane materials subject to the boundary conditions posed by the groundwater exposure in an undrained structure is emphasized. Finally, some recent results from currently ongoing research on such linings, particularly the hydraulic response of the rock mass and the long term behavior of the concrete and membrane materials are presented.

Stress state around cylindrical cavities in transversally isotropic rock mass

  • Lukic, Dragan C.;Prokic, Aleksandar D.;Brcic, Stanko V.
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.213-233
    • /
    • 2014
  • The present paper is dealing with the investigation of the stress field around the infinitely long cylindrical cavity, of a circular cross section, contained in the transversally isotropic elastic continuum. Investigation is based upon the determination of the stress function that satisfies the biharmonic equation, for the given boundary conditions and for rotationaly symmetric loading. The solution of the partial differential equation of the problem is given in the form of infinite series of Bessel's functions. Determination of the stress-strain field around cavities is a common requirement for estimation of safety of underground rock excavations.

A SYSTEMS ASSESSMENT FOR THE KOREAN ADVANCED NUCLEAR FUEL CYCLE CONCEPT FROM THE PERSPECTIVE OF RADIOLOGICAL IMPACT

  • Yoon, Ji-Hae;Ahn, Joon-Hong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.17-36
    • /
    • 2010
  • In this study, we compare the mass release rates of radionuclides(1) from waste forms arising from the KIEP-21 pyroprocessing system with (2) those from the directly-disposed pressurized-water reactor spent fuel, to investigate the potential radiological and environmental impacts. In both cases, most actinides and their daughters have been observed to remain in the vicinity of waste packages as precipitates because of their low solubility. The effects of the waste-form alteration rate on the release of radionuclides from the engineered-barrier boundary have been found to be significant, especially for congruently released radionuclides. the total mass release rate of radionuclides from direct disposal concept is similar to those from the pyroprocessing disposal concept. While the mass release rates for most radionuclides would decrease to negligible levels due to radioactive decay while in the engineered barriers and the surrounding host rock in both cases even without assuming any dilution or dispersal mechanisms during their transport, significant mass release rates for three fission-product radionuclides, $^{129}I$, $^{79}Se$, and $^{36}Cl$, are observed at the 1,000-m location in the host rock. For these three radionuclides, we need to account for dilution/dispersal in the geosphere and the biosphere to confirm finally that the repository would achieve sufficient level of radiological safety. This can be done only after we have known where the repository site would by sited. the footprint of repository for the KIEP-21 system is about one tenth of those for the direct disposal.

Study of Brittle Failure (취성파괴에 관한 고찰)

  • Cheon, Dae-Sung;Synn, Joong-Ho;Jeon, Seo-Kwon;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.437-450
    • /
    • 2006
  • Failure around an underground opening is a function of in-situ stress magnitudes, intact rock strength and the distribution of fractures in the rock mass. At high in-situ stress, the failure process is affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies dies on the stress-induced damage of rock revealed its importance especially in a highly stressed regime. As the constructions of underground structures at deep depths increased, the cases of the brittle failure also increased and furthermore spalling was occurred in Korea at low depths. To improve the stability of the underground structures at highly stressed regime, the characteristics of brittle failure should be examined, but they have not yet been properly investigated. Therefore in this report the characteristics of brittle failure such as types, failure mechanism and modeling methods etc. were considered in all aspects, based on the previous researches.

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.