• 제목/요약/키워드: rock mass boundary

검색결과 58건 처리시간 0.02초

터널 굴착시 고려해야 할 주변앙반의 매개변수와 진행성 파괴 (Considerable Parameters and Progressive Failure of Rock Masses due to the Tunnel Excavation)

  • 임수빈;이성민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.231-234
    • /
    • 1994
  • Concentrated stresses due to the tunnel excavation easily cause failure around opening in the soft rock mass layer. Thus, while excavatng tunnel in the soft rock mass layerm it is very important to predict the possibility of failure or yielding zones around tunnel boundary. There are two typical methods to predict these; 1) the analysis of field monioring data and 2) numerical analysis. In this study, it was attempted to describe the time-dependent or progressive rock mass manner due to the continuous failure and fracturing caused by surrounding underground openings using the second method. In order to apply the effects of progressive failure underground, an iterative technique was used with the Hoek and Brown rock mass failure theory. By developing and simulating, three different shapes of twin tunnels, this research simulated and estimated the proper size of critical pillar width between tunnels, distributed stresses on the tunnel sides, and convergences of tunnel crowns. Moreover, results out progressive failure technique based on the Hoek and Brown theory were compared with the results out of Mohr-Coulomb theory.

  • PDF

수치해석에 의한 암반특성의 변화가 터널에 미치는 영향 (Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis)

  • 권순섭;이종선;김경효;이준우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5\sim1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

Study on bearing characteristic of rock mass with different structures: Physical modeling

  • Zhao, Zhenlong;Jing, Hongwen;Shi, Xinshuai;Yang, Lijun;Yin, Qian;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • 제25권3호
    • /
    • pp.179-194
    • /
    • 2021
  • In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) × 1000 mm (length) × 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.

수치해석에 의한 암반특성의 변화가 터널에 미치는 영향 (Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis)

  • 권순섭;박태순;이종선;이준우
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.31-38
    • /
    • 2009
  • 국내에서 터널 설계시 암반의 물리적, 역학적 특성에 따라서 $5{\sim}6$개의 암반등급으로 분류한 후 터널의 용도 및 특성을 고려하여 지보시스템을 결정하게 된다. 그러나 이와 같은 방법은 암반의 특성이 균일하다는 가정을 하고 있으며 암반특성이 종 방향으로 변화될 경우 이에 대한 지보시스템의 친정이 달라져야 한다. 본 연구는 3차원 수치해석 프로그램(FLAC3D)을 이용하여 NATM 터널시공시 암반특성의 종방향 변화가 암반분류 및 지보시스템 결정에 미치는 영향을 파악하고자 총 14Case를 현장의 시공순서를 고려한 해석을 수행하였다. 암반특성의 종방향 변화시 전 후방 암반의 강성차이가 작은 경우에는 암반경계를 기준으로 0.5D내외, 강성차이가 큰 경우에는 1.0D 내외의 범위에서 유리한 암반등급의 거동과는 다르므로 암반특성에 따라서 암반경계층을 기준으로 $0.5D{\sim}1.0D$구간을 안전측(보수적)으로 평가하여 설계에 반영하거나, 지보패턴을 하향조정하는 것이 시공성, 작업효율성, 공사기간 등의 측면에서 효과적일 것으로 판단된다.

지하공간에 관련된 수치해석의 사례연구 (Case study on numerical analyses related to large rock caverns)

  • 이근희
    • 터널과지하공간
    • /
    • 제2권1호
    • /
    • pp.152-163
    • /
    • 1992
  • The study of rock mass behaviour through a numerical analysis is important for the design, construction and maintenance of large rock caverns. The objectives of the numerical analysis are to design reasonably and construct safely the underground structures, to maintain them soundly after construction and to extend them securely for a desired period of time. Methods of numerical analyses included in this case study are the finite element method, the boundary element method, and the distinct element method. The numerical models are purely elastic, elastoplastic, visco-elastic, visco-plastic, easto-visco-plastic and jointed-discontinuous materials. The results of this case study indicate that the rock mass behaviour could be predicted exactly through continuous comparisons of the numerical results with the in-situ measurements.

  • PDF

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

불연속 암반내 터널굴착의 안정성 평가 및 암반분류를 위한 인공 신경회로망 개발 (Development of Artificial Neural Networks for Stability Assessment of Tunnel Excavation in Discontinuous Rock Masses and Rock Mass Classification)

  • 문현구;이철욱
    • 터널과지하공간
    • /
    • 제3권1호
    • /
    • pp.63-79
    • /
    • 1993
  • The design of tunnels in rock masses often demands more informations on geologic features and rock mass properties than acquired by usual field survey and laboratory testings. In practice, the situation that a perfect set of geological and mechanical input data is given to geomechanics design engineer is rare, while the engineers are asked to achieve a high level of reliability in their design products. This study presents an artificial neural network which is developed to resolve the difficulties encountered in conventional design techniques, particulary the problem of deteriorating the confidence of existing numerical techniques such as the finite element, boundary element and distinct element methods due to the incomplete adn vague input data. The neural network has inferring capabilities to identify the possible failure modes, support requirements and its timing for underground openings, from previous case histories. Use of the neural network has resulted in a better estimate of the correlation between systems of rock mass classifications such as the RMR and Q systems. A back propagation learning algorithm together with a multi-layer network structure is adopted to enhance the inferential accuracy and efficiency of the neural network. A series of experiments comparing the results of the neural network with the actual field observations are performed to demonstrate the abilities of the artificial neural network as a new tunnel design assistance system.

  • PDF

FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석 (A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD)

  • 이희석
    • 터널과지하공간
    • /
    • 제14권4호
    • /
    • pp.248-260
    • /
    • 2004
  • 응력 증가에 의한 취성 암석의 손상은 미세균열의 개시로부터 시작하여 각 개별 균열들의 전파 및 결합에 의해 거시적인 파괴면을 발생시킨다. 전통적으로 암반의 손상 및 파괴현상을 설명하기 위해 거시적인 파괴 기준이나 탄소성 모델과 같은 연속체적인 접근법이 주류를 이루어왔다. 하지만 개별적인 균열들의 개시와 전락 과정을 명시적으로 고려할 수 있다면 현상론적인 관점에서 보다 실제에 가까운 암석 손상 및 파괴 과정을 재현할 수 있을 것이다. 본 연구에서는 암석의 균열 진전 모델링을 위해 개발된 경계요소 코드인 FRACOD를 이용하여 암석의 손상 및 파괴 과정을 모사한 결과를 제시한다. 수치일축압축시험을 통해 개발된 모델의 적정성을 검증하고 암반의 치수효과를 고려한 현실적인 암석 파괴 과정을 재현하였다. 또한 이러한 접근법의 적용 사례로서, 실제 굴착이 진행중인 심부 수갱 암반 주변에서 심도와 암반 특성에 따라 균열 진전과 이에 따른 암반 손상의 범위를 예측한 결과를 제시하였다. 이 접근법은 취성도가 큰 암반에서 발생하는 안정성 문제에 대한 공학적인 해법을 찾는데 기여를 할 수 있을 것으로 기대된다.

三次元 境界要素法 BEAP3D에 의한 採掘空洞 安定性 評價 (Stability Analysis for Mine Openings by a Three Dimensional Boundary Element Method-BEAP3D)

  • 정소걸;김임호;조영도
    • 터널과지하공간
    • /
    • 제8권2호
    • /
    • pp.118-129
    • /
    • 1998
  • A three dimensional boundary element method-BEAP3D was applied to the stability analysis of the mine openings not only to improve the stability during mining operations but also to serve the evaluation of the mine openings for further utilization. Stability analysis on the stability of the room-and-pillar stopes underneath of the old mine openings and the openings to be created by the newly proposed sublevel stoping method at the Nowhado Pyrophyllite Mine, showed that rock mass around the old and new stopes would be stable. Six stopes of a sublevel stoping designed for the Choongmu Limestone Quarry would be stable, too. A sublevel stoping method consisting of six stopes was similarly suggested for the Keumpyung Quartzite Mine. The stability can be guaranteed through out six stopes. Since mining starts from the bottom 1st sublevel to the uppermost sublevel, the safety of the stopes will improve together with the mining process. It would highly be recommended to investigate in-situ rock properties and the rock stresses for future studies. Even though the rock around the uppermost part and bottom of all the stopes have a very high factor of safety, spot reinforcements such as rock bolting would be recommended to mitigate the intermediate and minor principal stresses acting in a tensile mode.

  • PDF

서울일대 암반을 대상으로 한 Geotechnical Information System (GTIS)의 개발 및 활용 (2) (A Development and utilization of Geotechnical Information System(GTIS) of the Rock Mass in Seoul Metropolitan Area(2))

  • 김정엽;박형동
    • 터널과지하공간
    • /
    • 제6권3호
    • /
    • pp.223-233
    • /
    • 1996
  • Geotechnical Information System (GTIS) for efficient management of three dimensional borehole data has been developed. Geotechnical maps in the vicinity of Bulkwangdong, Seoul station, Itaewon, Han river near Yuido, and Jungrangchon were constructed by Kriging method. In Bulkwangdong and Jungrangchon area where boundary between granite and gneiss is present, gneiss has been more weathered than granite, but in Seoul station and Itaewon area where the boundary is also present, granite has been more weathered than gneiss. It has been inferred that when Seoul granite intruded, the strength of gneiss in Bulkwangdong and Jungrangchon area was lowered by the attitude of foliation plane than in Seoul station and Itaewon area, so the gneiss has been easily fractured and weathered in Bulkwangdong and Jungrangchon area. Geotechnical map in the vicinity of Yuido showed that there is an NW-SE trend weakness zone that might be affected by major faults under Han river and it is expected that the fault zone may be present in construction area of Kyoungbu Highspeed Railway that lies below the Han river like the Subway Line No.5.

  • PDF