• Title/Summary/Keyword: robustness design

Search Result 1,198, Processing Time 0.022 seconds

Theoretical and experimental study of robustness based design of single-layer grid structures

  • Wu, Hui;Zhang, Cheng;Gao, Bo-Qing;Ye, Jun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.19-33
    • /
    • 2014
  • Structural robustness refers to the ability of a structure to avoid disproportionate consequences to the original cause. Currently attentions focus on the concepts of structural robustness, and discussions on methods of robustness based structural design are rare. Firstly, taking basis in robust $H_{\infty}$ control theory, structural robustness is assessed by $H_{\infty}$ norm of the system transfer function. Then using the SIMP material model, robustness based design of grid structures is formulated as a continuum topology optimization problem, where the relative density of each element and structural robustness are considered as the design variable and the optimization objective respectively. Generalized elitist genetic algorithm is used to solve the optimization problem. As examples, robustness configurations of plane stress model and the rectangular hyperbolic shell model were obtained by robustness based structural design. Finally, two models of single-layer grid structures were designed by conventional and robustness based method respectively. Different interference scenarios were simulated by static and impact experiments, and robustness of the models were analyzed and compared. The results show that the $H_{\infty}$ structural robustness index can indicate whether the structural response is proportional to the original cause. Robustness based structural design improves structural robustness effectively, and it can provide a conceptual design in the initial stage of structural design.

Development of a Robust Design Process Using a Robustness Index (강건성 지수를 이용한 강건설계 기법의 개발)

  • Hwang, Kwang-Hyeon;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1426-1435
    • /
    • 2003
  • Design goal is to find the one that has the highest probability of success and the smallest variation. A robustness index has been proposed to satisfy these conditions. The two-step optimization process of the target problem requires a scaling factor. The search process of a scaling factor is replaced with the making of the decoupled design between the mean and the standard deviation. The decoupled design matrix is formed from the sensitivity or the sum of squares. After establishing the design matrix, the robust design process has a new three-step one. The first is ″reduce variability,″ the second is ″make the candidate designs that satisfy constraints and move the mean on the target,″ and the final is ″select the best robust design using the proposed robustness index.″ The robust design process is verified by three examples and the results using the robustness index are compared with those of other indices.

Structural robustness: A revisit

  • Andre, Joao
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.193-205
    • /
    • 2020
  • The growing need for assuring efficient and sustainable investments in civil engineering structures has determined a renovated interest in the rational design of such structures from designers, clients and authorities. As a result, risk-informed decision-making methodologies are increasingly being used as a direct decision tool or as an upper-level layer from which performance-based approaches are then calibrated against. One of the most important and challenging aspects of today's structural design is to adequately handle the system-level effects, the known unknowns and the unknown unknowns. These aspects revolve around assessing and evaluating relevant damage scenarios, namely those involving unacceptable/intolerable damage levels. Hence, the importance of risk analysis of disproportionate collapse, and along with it of robustness. However, the way robustness has been used in modern design codes varies substantially, from simple provisions of prescriptive rules to complex risk analysis of the disproportionate collapse. As a result, implementing design for robustness is still very much a grey area and more so when it comes to defining means to quantify robustness. This paper revisits the most common robustness frameworks, highlighting their merits and limitations, and identifies one among them which is very promising as a way forward to solve the still open challenges.

Minimizing Weighted Mean of Inefficiency for Robust Designs

  • Seo, Han-Son
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.95-104
    • /
    • 2008
  • This paper addresses issues of robustness in Bayesian optimal design. We may have difficulty applying Bayesian optimal design principles because of the uncertainty of prior distribution. When there are several plausible prior distributions and the efficiency of a design depends on the unknown prior distribution, robustness with respect to misspecification of prior distribution is required. We suggest a new optimal design criterion which has relatively high efficiencies across the class of plausible prior distributions. The criterion is applied to the problem of estimating the turning point of a quadratic regression, and both analytic and numerical results are shown to demonstrate its robustness.

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

Optimum PI Controller Design for an Oil Cooler System Using GA (GA를 이용한 오일쿨러시스템의 최적 PI제어기 설계)

  • Jung, Young-Mi;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.28-34
    • /
    • 2014
  • This paper deals with optimum PI controller design using genetic algorithm to improve control performance and robustness for an oil cooler system. The optimum PI gain was found to minimize an object function, integrated absolute error, and to satisfy control design specifications such as overshoot and settling time based on practical transfer function of the oil cooler system. The control performance and robustness were investigated by comparing indicial responses and Bode diagram analysis with respect to three kinds of PI gains obtained from different gain decision manners. Moreover, the robustness against to input disturbances, sinusoidal wave form and abrupt single pulse, was evaluated. The computer simulation results showed that the suggested optimum gain can establish desirable control performance and strong robustness with easy design process.

Optimization Method for a Coupled Design, Considering Robustness (강건성을 고려한 연성설계의 최적화 방법)

  • Kang, Dong-Heon;Song, Byoung-Cheol;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2008
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Robust Design Study of Engine Cylinder Head (엔진 실린더헤드 강건 설계 방안)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.133-139
    • /
    • 2011
  • Maintaining adequate sealing in engine cylinder head is a crucial factor in engine design. Failure of engine operations occurs mainly owing to the leaking by decreased sealing pressure. Reliability-robustness concept is applied to the engine cylinder head system. Deterministic way to obtain engineering solution in CAE industry may not consider the effects of noises and disturbances experienced during operation. However, analytical reliability-robustness concept may make possible to reduce the sensitivity of system with noise factors. Influences of design factors including noise factors would be predicted in analytical way. Optimized design may be obtained by shrinking variability and shifting to design target. Three-dimensional finite element analyses have been performed to apply analytical reliability-robustness concept.

Gradient Index Based Robust Optimal Design Method for MEMS Structures (구배 지수에 근거한 MEMS 구조물의 강건 최적 설계 기법)

  • Han, Jeung-Sam;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1234-1242
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation for MEMS structures and its application to a resonant-type micro probe. The basic idea is to use the gradient index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-effective and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation. This method, although shown for MEMS structures, may as well be easily applied to conventional mechanical structures where information on uncertainties is lacking but robustness is highly important.

A New Information Index of Axiomatic Design for Robustness (강건성을 고려한 공리적 설계의 새로운 정보 지수)

  • Hwang, Kwang-Hyeon;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2073-2081
    • /
    • 2002
  • In product design and manufacturing, axiomatic design provides a systematic approach for the decision-making process. Two axioms have been defined such as the Independence Axiom and the Information Axiom. The Information Axiom states that the best design among those that satisfy the independence axiom is the one with the least information content. In other words, the best design is the one that has the highest probability of success. On the other hand, the Taguchi robust design is used in the two-step process; one is "reduce variability," and the other is "adjust the mean on the target." The two-step can be interpreted as a problem that has two FRs (functional requirements). Therefore, the Taguchi method should be used based on the satisfaction of the Independence Axiom. Common aspects exist between the Taguchi method and Axiomatic Design in that a robust design is induced. However, different characteristics are found as well. The Taguchi method does not have the design range, and the probability of success may not be enough to express robustness. Our purpose is to find the one that has the highest probability of success and the smallest variation. A new index is proposed to satisfy these conditions. The index is defined by multiplication of the robustness weight function and the probability density function. The robustness weight function has the maximum at the target value and zero at the boundary of the design range. The validity of the index is proved through various examples.gh various examples.