• Title/Summary/Keyword: robust tracking

Search Result 996, Processing Time 0.028 seconds

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Robust Mean-Shift Tracking Using Adoptive Selection of Hue/Saturation (Hue/Saturation 영상의 적응적 선택을 이용한 강인한 Mean-Shift Tracking)

  • Park, Han-dong;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.579-582
    • /
    • 2015
  • The Mean-Shift is a robustness algorithm that can be used for tracking the object using the similarity of histogram distributions of target model and target candidate. However, Mean-shift using hue information has disadvantage of tracking a wrong target when the target and background has similar hue distributions. We then propose a robust Mean-Shift tracking algorithm using new image that combined upper 4bit-planes in hue and saturation, respectively.

  • PDF

Design of Continuous Variable Structure Tracking Controller With Prescribed Performance for Brushless Direct Drive Drive Servo Motor

  • Lee, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • A continuous, accurate, and robust variable structure tracking controller(CVSTC) is designed for brushless direct drive servo motors(BLDDSM). Although conventional variable structure controls can give the desired tracking performances, there exists an inevitable chattering problems in control input which is undesirable for direct drive systems. With the presented algorithm, not only the chattering problems are removed by using the efficient compensation of the disturbance observer, but also the prescribed tracking trajectory can be obtained using the sliding dynamics when an initial of the desired trajcetory is different from that of a BLDDSM. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the suggested algorithm is demonstrated through the computer simulation for a BLDDSM under load variations.

  • PDF

Combining an Edge-Based Method and a Direct Method for Robust 3D Object Tracking

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • In the field of augmented reality, edge-based methods have been popularly used in tracking textureless 3D objects. However, edge-based methods are inherently vulnerable to cluttered backgrounds. Another way to track textureless or poorly-textured 3D objects is to directly align image intensity of 3D object between consecutive frames. Although the direct methods enable more reliable and stable tracking compared to using local features such as edges, they are more sensitive to occlusion and less accurate than the edge-based methods. Therefore, we propose a method that combines an edge-based method and a direct method to leverage the advantages from each approach. Experimental results show that the proposed method is much robust to both fast camera (or object) movements and occlusion while still working in real time at a frame rate of 18 Hz. The tracking success rate and tracking accuracy were improved by up to 84% and 1.4 pixels, respectively, compared to using the edge-based method or the direct method solely.

Frequency Tracking Error Analysis of LQG Based Vector Tracking Loop for Robust Signal Tracking

  • Park, Minhuck;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • In this paper, we implement linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) instead of conventional extended Kalman filter based vector tracking loop (EKF-VTL). The LQG-VTL can improve the performance compared to the EKF-VTL by generating optimal control input at a specific performance index. Performance analysis is conducted through two factors, frequency thermal noise and frequency dynamic stress error, which determine total frequency tracking error. We derive the thermal noise and the dynamic stress error formula in the LQG-VTL. From frequency tracking error analysis, we can determine control gain matrix in the LQG controller and show that the frequency tracking error of the LQG-VTL is lower than that of the EKF-VTL in all C/N0 ranges. The simulation results show that the LQG-VTL improves performance by 30% in Doppler tracking, so the LQG-VTL can extend pre-integration time longer and track weaker signals than the EKF-VTL. Therefore, the LQG-VTL algorithm is more robust than the EKF-VTL in weak signal environments.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Robust human tracking via key face information

  • Li, Weisheng;Li, Xinyi;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5112-5128
    • /
    • 2016
  • Tracking human body is an important problem in computer vision field. Tracking failures caused by occlusion can lead to wrong rectification of the target position. In this paper, a robust human tracking algorithm is proposed to address the problem of occlusion, rotation and improve the tracking accuracy. It is based on Tracking-Learning-Detection framework. The key auxiliary information is used in the framework which motivated by the fact that a tracking target is usually embedded in the context that provides useful information. First, face localization method is utilized to find key face location information. Second, the relative position relationship is established between the auxiliary information and the target location. With the relevant model, the key face information will get the current target position when a target has disappeared. Thus, the target can be stably tracked even when it is partially or fully occluded. Experiments are conducted in various challenging videos. In conjunction with online update, the results demonstrate that the proposed method outperforms the traditional TLD algorithm, and it has a relatively better tracking performance than other state-of-the-art methods.

Robust Filtering Algorithm for Improvement of Air Navigation System (항행시스템 성능향상을 위한 강인한 필터링 알고리즘)

  • Cho, Taehwan;Kim, Jinhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • Among various fields of the CNS/ATM, the surveillance field which includes ADS-B system, MLAT system, and WAM system is implemented. These next generation systems provide superior performance in tracking aircrafts. However, They still have error. In this paper, filtering algorithm is proposed in order to enhance aircraft tracking performance of ADS-B, MLAT, and WAM systems. The proposed method is a Robust Interacting Multiple Model filter, called Robust IMM filter, that improves IMM filter. The Robust IMM filter can not only improves the aircraft tracking performance but also track aircraft continually using estimates calculated from the filter when data losses occur. The simulation results of the proposed aircraft tracking methods show that the filtering data provides a better performance up to an average of 19.21%.

Road Sign Tracking using Affine-AR Model and Robust Statistics (어파인-자기 회귀 모델과 강인 통계를 사용한 교통 표지판 추적)

  • Yoon, Chang-Yong;Cheon, Min-Kyu;Lee, Hee-Jin;Kim, Eun-Tai;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.126-134
    • /
    • 2009
  • This paper describes the vision-based system to track road signs from within a moving vehicle. The proposed system has the standard architecture with particle filter due to its robust tracking performance in complex environment. In the case of tracking road signs in real environment, it has a great difficulty in predicting time series data by reason of an occlusion due to an obstacle and the rapid change of objects on roads. To overcome this problem and improve the tracking performance, this paper proposes the algorithm using an autoregressive model as an state transition model which has affine parameters as states and using robust statistics for determining occlusion due to obstacles. The experiments of this paper show that the proposed method is efficient for real time tracking of road signs and performs well in road signs under occlusion due to obstacles.

Robust Generalized Labeled Multi-Bernoulli Filter and Smoother for Multiple Target Tracking using Variational Bayesian

  • Li, Peng;Wang, Wenhui;Qiu, Junda;You, Congzhe;Shu, Zhenqiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.908-928
    • /
    • 2022
  • Multiple target tracking mainly focuses on tracking unknown number of targets in the complex environment of clutter and missed detection. The generalized labeled multi-Bernoulli (GLMB) filter has been shown to be an effective approach and attracted extensive attention. However, in the scenarios where the clutter rate is high or measurement-outliers often occur, the performance of the GLMB filter will significantly decline due to the Gaussian-based likelihood function is sensitive to clutter. To solve this problem, this paper presents a robust GLMB filter and smoother to improve the tracking performance in the scenarios with high clutter rate, low detection probability, and measurement-outliers. Firstly, a Student-T distribution variational Bayesian (TDVB) filtering technology is employed to update targets' states. Then, The likelihood weight in the tracking process is deduced again. Finally, a trajectory smoothing method is proposed to improve the integrative tracking performance. The proposed method are compared with recent multiple target tracking filters, and the simulation results show that the proposed method can effectively improve tracking accuracy in the scenarios with high clutter rate, low detection rate and measurement-outliers. Code is published on GitHub.