• 제목/요약/키워드: robust regression model

검색결과 179건 처리시간 0.018초

입방형 영역에서의 G-효율이 높은 Model-Robust 실험설계 (Model-Robust G-Efficient Cuboidal Experimental Designs)

  • 박유진;이윤주
    • 산업공학
    • /
    • 제23권2호
    • /
    • pp.118-125
    • /
    • 2010
  • The determination of a regression model is important in using statistical designs of experiments. Generally, the exact regression model is not known, and experimenters suppose that a certain model form will be fit. Then an experimental design suitable for that predetermined model form is selected and the experiment is conducted. However, the initially chosen regression model may not be correct, and this can result in undesirable statistical properties. We develop model-robust experimental designs that have stable prediction variance for a family of candidate regression models over a cuboidal region by using genetic algorithms and the desirability function method. We then compare the stability of prediction variance of model-robust experimental designs with those of the 3-level face centered cube. These model-robust experimental designs have moderately high G-efficiencies for all candidate models that the experimenter may potentially wish to fit, and outperform the cuboidal design for the second-order model. The G-efficiencies are provided for the model-robust experimental designs and the face centered cube.

Usage of auxiliary variable and neural network in doubly robust estimation

  • Park, Hyeonah;Park, Wonjun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.659-667
    • /
    • 2013
  • If the regression model or the propensity model is correct, the unbiasedness of the estimator using doubly robust imputation can be guaranteed. Using a neural network instead of a logistic regression model for the propensity model, the estimators using doubly robust imputation are approximately unbiased even though both assumed models fail. We also propose a doubly robust estimator of ratio form using population information of an auxiliary variable. We prove some properties of proposed theory by restricted simulations.

ROBUST FUZZY LINEAR REGRESSION BASED ON M-ESTIMATORS

  • SOHN BANG-YONG
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.591-601
    • /
    • 2005
  • The results of fuzzy linear regression are very sensitive to irregular data. When this points exist in a set of data, a fuzzy linear regression model can be incorrectly interpreted. The purpose of this paper is to detect irregular data and to propose robust fuzzy linear regression based on M-estimators with triangular fuzzy regression coefficients for crisp input-output data. Numerical example shows that irregular data can be detected by using the residuals based on M-estimators, and the proposed robust fuzzy linear regression is very resistant to this points.

로버스트 회귀모형을 이용한 자료결합방법 (Statistical Matching Techniques Using the Robust Regression Model)

  • 전명식;정시송;박혜진
    • 응용통계연구
    • /
    • 제21권6호
    • /
    • pp.981-996
    • /
    • 2008
  • 서로 다른 출처로부터 얻어진 데이터 파일들을 하나의 데이터 파일로 만드는 통계적 자료결합방법은 공통변수와 서로 다른 고유변수를 포함하여 변수들 간에 존재하는 관련성에 대해 살펴볼 수 있다. Robin (1986)이 제안한 일반회귀모형의 예측값을 이용한 통계적 결합방법은 자료에 대한 다변량 정규성을 가정하기 때문에 이 가정을 위반하는 자료를 이용하는 것은 많은 문제를 수반한다. 본 연구는 제공파일의 고유변수에 모분포를 반영하지 못하는 특이점이 존재하는 경우, 일반회귀모형을 이용한 통계적 결합방법의 대안으로 로러스트 회귀추정방법을 이용한 자료결합방법을 제안하였다. 나아가 로버스트 회귀모형을 이용한 결합방법과 일반회귀모형을 이용한 결합방법에서의 상관관계 및 결정계수 보존에 관한 성능을 비교하기 위하여 모의실험을 수행하였다.

Robust inference for linear regression model based on weighted least squares

  • 박진표
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.271-284
    • /
    • 2002
  • In this paper we consider the robust inference for the parameter of linear regression model based on weighted least squares. First we consider the sequential test of multiple outliers. Next we suggest the way to assign a weight to each observation $(x_i,\;y_i)$ and recommend the robust inference for linear model. Finally, to check the performance of confidence interval for the slope using proposed method, we conducted a Monte Carlo simulation and presented some numerical results and examples.

  • PDF

Robust extreme quantile estimation for Pareto-type tails through an exponential regression model

  • Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
    • Communications for Statistical Applications and Methods
    • /
    • 제30권6호
    • /
    • pp.531-550
    • /
    • 2023
  • The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.

대형 데이터에서 VIF회귀를 이용한 신속 강건 변수선택법 (Fast robust variable selection using VIF regression in large datasets)

  • 서한손
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.463-473
    • /
    • 2018
  • 연구에서는 선형회귀모형을 가정한 대형 데이터에서의 변수선택 알고리즘을 다룬다. 방법의 속도와 강건성에 주안점을 둔 여러 알고리즘들이 제안되었다. 그 중에서 streamwise 회귀 접근법을 사용한 VIF회귀는 신속하고 정확하게 수행된다. 그러나 VIF회귀는 최소제곱방법에 의해 모형이 추정되므로 이상치에 민감하다. 변수선택방법의 강건성을 높이기 위해 가중 추정치를 사용한 강건측도가 제안되었으며 강건 VIF회귀도 제안되었다. 본 연구에서는 잠재적 이상치를 탐지하여 제거한 후 VIF회귀를 수행하는, 빠르고 강건한 변수선택 방법을 제안한다. 제안된 방법은 모의실험과 데이터 분석 통해 다른 방법들과 비교된다.

저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구 (Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods)

  • 김범준;송재현;김형수;홍일표
    • 대한토목학회논문집
    • /
    • 제26권1B호
    • /
    • pp.39-50
    • /
    • 2006
  • 홍수를 예측하기 위해서 국내 5대강 유역의 홍수통제소는 저류함수모형을 사용하고 있으며 현재까지 홍수예측에 대한 많은 연구가 이루어지고 있다. 이에 본 논문에서는 현재 홍수통제소에서 사용되고 있는 저류함수모형과 과거의 강우-수위 관계를 이용한 회귀분석(regression analysis), 그리고 인공신경망(artificial neural network)을 이용하여 홍수를 예측하고 이를 비교, 분석하고자 하였다. 저류함수모형의 경우는 홍수통제소의 대표매개변수와 보정된 최적(평균)매개변수를 적용하였다. 그리고 회귀분석과 인공신경망은 1995~2001년까지의 홍수사상 중 4개의 홍수사상을 선택하여 회귀계수를 구하고 역전파(backpropagation) 알고리즘을 사용하여 학습을 시켰다. 그 결과 저류함수모형의 경우 최적 매개변수를 이용하였을 때 기존의 홍수통제소에서 사용하고 있는 대표매개변수보다 예측이 개선되었으며, 회귀분석의 방법인 다중회귀분석, Robust 회귀분석, Stepwise 회귀분석을 이용한 홍수예측은 비교적 정확한 결과를 얻을 수 있었다. 역전파 알고리즘을 사용한 인공신경망의 경우도 회귀분석을 이용한 홍수예측보다는 다소 못하였지만 정확한 결과를 얻을 수 있었다.

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

Theil방법을 이용한 퍼지회귀모형 (Fuzzy Theil regression Model)

  • 윤진희;이우주;최승회
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.366-370
    • /
    • 2013
  • 설명변수와 반응변수 사이의 통계적 관계를 설명하기 위해 사용되는 회귀모형을 분석하는 방법을 회귀분석이라 한다. 본 논문에서는 독립변수와 종속변수에 대한 퍼지관계를 표현하는 퍼지회귀모형를 추정하기 위하여 이상치에 민감하지 않은 로버스트한 추정량인 Theil방법을 소개한다. Theil방법은 설명변수와 반응변수의 ${\alpha}$-수준집합의 각 성분으로 구성된 집합에서 선택한 임의의 두 쌍 자료로부터 계산된 변화율의 중위수를 두 변수에 대한 변화량의 추정량으로 간주한다. 본 논문에서 제안된 Theil방법이 최소자승법을 이용하여 추정된 퍼지회귀모형보다 더 정확할 수 있음을 예제를 통하여 확인한다.